
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Detecting patterns of climate change in long-term forecasts of marine environmental parameters

Forecasting environmental parameters in the distant future requires complex modelling and large computational resources. Due to the sensitivity and complexity of forecast models, long-term parameter forecasts (e.g. up to 2100) are uncommon and only produced by a few organisations, in heterogeneous formats and based on different assumptions of greenhouse gases emissions. However, data mining techniques can be used to coerce the data to a uniform time and spatial representation, which facilitates their use in many applications. In this paper, streams of big data coming from AquaMaps and NASA collections of 126 long-term forecasts of nine types of environmental parameters are processed through a cloud computing platform in order to (i) standardise and harmonise the data representations, (ii) produce intermediate scenarios and new informative parameters, and (iii) align all sets on a common time and spatial resolution. Time series cross-correlation applied to these aligned datasets reveals patterns of climate change and similarities between parameter trends in 10 marine areas. Our results highlight that (i) the Mediterranean Sea may have a standalone ‘response’ to climate change with respect to other areas, (ii) the Poles are most representative of global forecasted change, and (iii) the trends are generally alarming for most oceans.
Time series, aquamaps, Mathematical geography. Cartography, environmental parameters, GA1-1776, NASA Earth Exchange, Species distribution modelling, Climate change, environmental parameters forecasting, Environmental parameters forecasting, Ecological modelling, species distribution modelling, climate change, nasa earth exchange, ecological modelling, time series, AquaMaps
Time series, aquamaps, Mathematical geography. Cartography, environmental parameters, GA1-1776, NASA Earth Exchange, Species distribution modelling, Climate change, environmental parameters forecasting, Environmental parameters forecasting, Ecological modelling, species distribution modelling, climate change, nasa earth exchange, ecological modelling, time series, AquaMaps
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
