Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Environmental Science and Health Part A
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Soil Contamination and Plant Uptake of Heavy Metals at Polluted Sites in China

Authors: Wang, Q.R.; Cui, Y.S.; Liu, X.M.; Dong, Y.T.; Christie, Peter;

Soil Contamination and Plant Uptake of Heavy Metals at Polluted Sites in China

Abstract

We investigated heavy metal contamination in soils and plants at polluted sites in China including some with heavy industries, metal mining, smelting and untreated wastewater irrigation areas. We report our main findings in this paper. The concentrations of heavy metals, including Cd and Zn, in the soils at the investigated sites were above the background levels, and generally exceeded the Government guidelines for metals in soil. The concentrations of metals in plants served to indicate the metal contamination status of the site, and also revealed the abilities of various plant species to take up and accumulate the metals from the soil. Substantial differences in the accumulation of heavy metals were observed among the plant species investigated. Polygonum hydropiper growing on contaminated soils in a sewage pond had accumulated 1061 mg kg(-1) of Zn in its shoots. Rumex acetosa L. growing near a smelter had accumulated more than 900 mg kg(-1) of Zn both in its shoots and roots. Therefore these species have potential for phytoremediation of metal-contaminated sites. Our results indicate the need to elucidate the dynamics of soil metal contamination of plants and the onward movement of metal contaminants into the food chain. Also our results indicate that the consumption of rice grown in paddy soils contaminated with Cd, Cr or Zn may pose a serious risk to human health, because from 24 to 22% of the total metal content in the rice biomass was concentrated in the rice grain. Platanus acerifolia growing on heavily contaminated soil accumulated only very low levels of heavy metals, and this mechanism for excluding metal uptake may have value in crop improvement. Sources of metal entering the environmental matrices studied included untreated wastewater, tailings or slurries and dust depositions from metal ore mining, and sewage sludge. Pb, Zn or Cd concentrations declined with the distance from metal smelter in accordance with a good exponential correlation (R2>0.9), and this shows that metal dust deposition is an important contributor to metal contamination of soils.

Country
United Kingdom
Related Organizations
Keywords

China, /dk/atira/pure/subjectarea/asjc/2300/2305, Environmental Engineering, /dk/atira/pure/subjectarea/asjc/2300/2304, Industrial Waste, Food Contamination, Magnoliopsida, Environmental Science(all), Metals, Heavy, Environmental Chemistry, Humans, Soil Pollutants, Biomass, Rumex, Sewage, Oryza, /dk/atira/pure/subjectarea/asjc/2300, Biodegradation, Environmental, Polygonum, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    216
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
216
Top 1%
Top 1%
Top 10%
bronze