Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The American Natural...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The American Naturalist
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Theses@asb
Article . 2021
Data sources: Theses@asb
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The American Naturalist
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Movement and Seasonal Energetics Mediate Vulnerability to Disturbance in Marine Mammal Populations

Authors: Gallagher, Cara Alyse; Grimm, Volker; Kyhn, Line Anker; Kinze, Carl Christian; Nabe-Nielsen, Jacob;

Movement and Seasonal Energetics Mediate Vulnerability to Disturbance in Marine Mammal Populations

Abstract

AbstractIn marine environments, noise from human activities is increasing dramatically, causing animals to alter their behavior and forage less efficiently. These alterations incur energetic costs that can result in reproductive failure and death and may ultimately influence population viability, yet the link between population dynamics and individual energetics is poorly understood. We present an energy budget model for simulating effects of acoustic disturbance on populations. It accounts for environmental variability and individual state, while incorporating realistic animal movements. Using harbor porpoises (Phocoena phocoena) as a case study, we evaluated population consequences of disturbance from seismic surveys and investigated underlying drivers of vulnerability. The framework reproduced empirical estimates of population structure and seasonal variations in energetics. The largest effects predicted for seismic surveys were in late summer and fall and were unrelated to local abundance, but instead were related to lactation costs, water temperature, and body fat. Our results demonstrate that consideration of temporal variation in individual energetics and their link to costs associated with disturbances is imperative when predicting disturbance impacts. These mechanisms are general to animal species, and the framework presented here can be used for gaining new insights into the spatiotemporal variability of animal movements and energetics that control population dynamics.

Countries
Germany, Denmark
Keywords

Population Dynamics, bioenergetics, Models, Biological, Pregnancy, Phocoena, Animals, Lactation, marine mammals, Institut für Biochemie und Biologie, harbor porpoises, Feeding Behavior, agent-based model, Adipose Tissue, anthropogenic disturbances, energy budget, Female, ddc:570, Energy Metabolism, Noise

Powered by OpenAIRE graph
Found an issue? Give us feedback