Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drivers of increasing global crop production: A decomposition analysis

Authors: Linus Blomqvist; Luke Yates; Barry W Brook;

Drivers of increasing global crop production: A decomposition analysis

Abstract

Abstract Rising crop production over the last half century has had far-reaching consequences for human welfare and the environment. With food demand projected to rise, one of the central challenges in minimizing agriculture’s impacts on the climate and biodiversity is to increase crop production with higher yields rather than more cropland. However, quantifying progress is challenging. When analyzed at the most aggregated, global level, yields can be defined as the total crop output per unit area per year, but aggregate yields are driven by multiple factors, only some of which have a clear relationship to improved agricultural production. To date, there is no research that simultaneously determines how much of rising crop production has been met by rising aggregate yields versus cropland expansion, while also quantifying the unique contribution of each yield driver. Using LMDI decomposition analysis, we find that rising aggregate yields contributed far more than cropland expansion (89% compared to 11%). That is, growing global food demand has by and large been met by growing more crops on the same amount of land, rather than expanding cropland. Our second-stage decomposition showed that nearly two-thirds of aggregate yield improvements have come from pure yield, or the output of a given crop per unit of harvested cropland area in a given country per unit area per year. The remainder has come from less-discussed drivers of aggregate yields, including cropping intensity, changes in the geographic distribution of cropland, and crop composition. Further, we use attribution analysis to show the contributions to different decomposition factors from countries grouped by climate, income, and region, as well as from different crops. Such granular yet comprehensive breakdowns of crop production and aggregate yields offer more accurate forecasts and can help focus policies on the most promising levers to meet rising food demand sustainably.

Country
Australia
Keywords

330, Science, Physics, QC1-999, Q, land use, crop production, Environmental technology. Sanitary engineering, Environmental sciences, decomposition analysis, GE1-350, TD1-1066, agriculture

Powered by OpenAIRE graph
Found an issue? Give us feedback