
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Daytime warming during early grain filling offsets the CO2 fertilization effect in rice

Abstract Increasing concentrations of atmospheric CO2 are projected to have positive effects on crop photosynthesis and yield (CO2 fertilization effect, CFE). High-temperature events, such as heatwaves, during sensitive periods can have significant negative impacts on crop yield and quality; however, the combined effects of elevated CO2 (EC) and short-period elevated temperature (ET) have not been determined in the open field. Here, we show a strong negative interaction between EC and ET obtained from a temperature-free-air controlled enhancement treatment embedded in a season-long free-air CO2 enrichment (FACE) experiment on a japonica rice cultivar, Koshihikari, over three seasons at the Tsukuba FACE facility in Ibaraki, Japan. CFE was 15% at ambient temperature, but it was reduced to 3% by ET, where canopy surface temperature (Tc) was elevated by ∼1.6 °C for 20 d after flowering. Reductions in CFE mainly arose from poor grain setting at Tc above ∼30 °C. High Tc also increased the percentage of chalky grains and substantially decreased the grain appearance quality, although the threshold temperature varied between the seasons. Simultaneous increases in atmospheric CO2 concentration and air temperature are expected to increase daytime canopy temperatures more than air warming alone, thereby affecting grain yield and quality. Crop models without these processes are likely to underestimate the negative impacts of climate change on crop yield and quality. The development of adaptation measures against heat stress, particularly during reproductive and grain-filling periods, needs to be enhanced and accelerated.
- Nanjing University of Information Science and Technology China (People's Republic of)
- National Agriculture and Food Research Organization Japan
- Shimane University Japan
- Shimane University Japan
- Nanjing University of Information Science and Technology China (People's Republic of)
Science, Physics, QC1-999, Q, Oryza sativa, Environmental technology. Sanitary engineering, chalky grains, heat stress, Environmental sciences, climate change, spikelet sterility, GE1-350, TD1-1066, free-air CO2 enrichment (FACE)
Science, Physics, QC1-999, Q, Oryza sativa, Environmental technology. Sanitary engineering, chalky grains, heat stress, Environmental sciences, climate change, spikelet sterility, GE1-350, TD1-1066, free-air CO2 enrichment (FACE)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
