Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEMS Microbiology Ecology
Article . 2019 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phosphorus mediates soil prokaryote distribution pattern along a small-scale elevation gradient in Noijin Kangsang Peak, Tibetan Plateau

Authors: Yanfen Wang; Zhe Pang; Kai Xue; Rongxiao Che; Shutong Zhou; Jianqing Du; Biao Zhang; +7 Authors

Phosphorus mediates soil prokaryote distribution pattern along a small-scale elevation gradient in Noijin Kangsang Peak, Tibetan Plateau

Abstract

Environmental factors that are important in shaping microbe community structure are less explored along elevation in the alpine grassland ecosystem of Tibet Plateau, which is generally phosphorus limited. Here, we examined soil prokaryote communities at three elevations to explore soil prokaryote community distribution and mediation factors in Noijin Kangsang Peak, Tibetan Plateau. Results showed prokaryote community compositions differed significantly by elevations. Topsoil or subsoil prokaryote richness and Shannon diversity were significantly lower at the middle than other elevations, while significantly higher aboveground biomass (AGB) and available P (AP) were found at the middle elevation. The importance of P for both soil layers was discovered by variation partitioning analysis based on redundancy analysis, finding that soil AP and total phosphorus, interacted with pH, explained 43% the variance in topsoil prokaryote community compositions, while soil AP, as well as AGB, explained 44% in subsoil. Consistently, structural equation model also revealed that AP was a mediating factor for prokaryote community diversity. Other than plant beta diversity, soil prokaryote beta diversity positively correlated with AP difference significantly. Taken together, the distribution patterns of soil prokaryote community were distinct along elevations even in a small scale in Noijin Kangsang Peak and was likely mediated predominantly by soil AP in both topsoil and subsoil.

Country
Australia
Keywords

Biomedical and clinical sciences, Science & Technology, Microbiota, Phosphorus, small scale, Tibet, Microbiology, Grassland, Environmental sciences, Biological sciences, Soil, Prokaryotic Cells, alpine grassland, Biomass, Life Sciences & Biomedicine, Ecosystem, Soil Microbiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Green
gold