Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Integrative and Comp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Integrative and Comparative Biology
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiple Physiological Responses to Multiple Environmental Challenges: An Individual Approach

Authors: Manuela Truebano; Piero Calosi; John I. Spicer; Lucy M. Turner; M. Hawkins; Camilla Bertolini; G. Nightingale;

Multiple Physiological Responses to Multiple Environmental Challenges: An Individual Approach

Abstract

The injection of anthropogenically-produced CO2 into the atmosphere will lead to an increase in temperature and a decrease in pH at the surface of the oceans by 2100. Marine intertidal organisms possess the ability to cope in the short term with environmental fluctuations exceeding predicted values. However, how they will cope with chronic exposure to elevated temperature and pCO2 is virtually unknown. In addition, individuals from the same species/population often show remarkable levels of variation in their responses to complex climatic changes: in particular, variation in metabolic rates often is linked to differences in individuals' performances and fitness. Despite its ecological and evolutionary importance, inter-individual variation has rarely been investigated within the context of climatic changes, and most investigations have typically employed orthogonal experimental designs paired to analyses of independent samples. Although this is undoubtedly a powerful and useful approach, it may not be the most appropriate for understanding all alterations of biological functions in response to environmental changes. An individual approach arguably should be favored when trying to describe organisms' responses to climatic change. Consequently, to test which approach had the greater power to discriminate the intensity and direction of an organism's response to complex climatic changes, we investigated the extracellular osmo/iono-regulatory abilities, upper thermal tolerances (UTTs), and metabolic rates of individual adults of an intertidal amphipod, Echinogammarus marinus, exposed for 15 days to combined elevated temperature and pCO2. The individual approach led to stronger and different predictions on how ectotherms will likely respond to ongoing complex climatic change, compared with the independent approaches. Consequently, this may call into question the relevance, or even the validity, of some of the predictions made to date. Finally, we argue that treating individual differences as biologically meaningful can lead to a better understanding of the physiological responses themselves and the selective processes that will occur with complex climatic changes; selection will likely play a crucial role in defining species' responses to future environmental changes. Individuals with higher metabolic rates were also characterized by greater extracellular osmo/iono-regulative abilities and higher UTTs, and thus there appeared to be no evolutionary trade-offs between these functions. However, as individuals with greater metabolic rates also have greater costs for maintenance and repair, and likely a lower fraction of energy available for growth and reproduction, trade-offs between life-history and physiological performance may still arise.

Related Organizations
Keywords

Male, Analysis of Variance, Acclimatization, Climate Change, Oceans and Seas, Temperature, Carbon Dioxide, Hydrogen-Ion Concentration, Osmoregulation, England, Stress, Physiological, Animals, Amphipoda, Sodium-Potassium-Exchanging ATPase, Energy Metabolism, Estuaries

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
bronze