Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biology Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biology Letters
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biology Letters
Article . 2019 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
Biology Letters
Article . 2019
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detecting past changes in vegetation resilience in the context of a changing climate

Authors: W. John Calder; Bryan Shuman;

Detecting past changes in vegetation resilience in the context of a changing climate

Abstract

Anthropogenic climate change is continuously altering ecological responses to disturbance and must be accounted for when examining ecological resilience. One way to measure resilience in ecological datasets is by considering the amount and duration of change from a baseline created by perturbations, such as disturbances like wildfire. Recovery occurs when ecological conditions return to equilibrium, meaning that no subsequent changes can be attributed to the effects of the disturbance, but climate change often causes the recovered state to differ from the previous baseline. The palaeoecological record provides an opportunity to examine these expectations because palaeoclimates changed continuously; few periods existed when environmental conditions were stationary. Here we demonstrate a framework for examining resilience in palaeoecological records against the backdrop of a non-stationary climate by considering resilience as two components of (i) resistance (magnitude of change) and (ii) recovery (time required to return) to predicted equilibrium values. Measuring these components of resilience in palaeoecological records requires high-resolution fossil (e.g. pollen) records, local palaeoclimate reconstructions, a model to predict ecological change in response to climate change, and disturbance records measured at the same spatial scale as the ecological (e.g. vegetation history) record. Resistance following disturbance is measured as the deviation of the fossil record from the ecological state predicted by the palaeoclimate records, and recovery time is measured as the time required for the fossil record to return to predicted values. We show that some cases may involve nearly persistent equilibrium despite large climate changes, but that others can involve a shift to a new state without any complete recovery.

Related Organizations
Keywords

Ecology, Fossils, Climate Change, Ecosystem, Time

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 10%
Top 10%
bronze