
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal Impacts on the Performance of Nanoscale-Gap Thermophotovoltaic Power Generators

handle: 10679/247
Thermal Impacts on the Performance of Nanoscale-Gap Thermophotovoltaic Power Generators
The thermal impacts on the performance of nanoscale-gap thermophotovoltaic (nano-TPV) power generators are investigated using a coupled near-field thermal radiation, charge, and heat transport formulation. A nano-TPV device consisting of a tungsten radiator, maintained at 2000 K, and cells made of indium gallium antimonide (In0.18Ga0.82Sb) are considered; the thermal management system is modeled assuming a convective boundary with a fluid temperature fixed at 293 K. Results reveal that nano-TPV performance characteristics are closely related to the temperature of the cell. When the radiator and the junction are separated by a 20 nm vacuum gap, the power output and the conversion efficiency of the system are respectively 5.83 × 105 Wm-2 and 24.8% at 300 K, whereas these values drop to 8.09 × 104 Wm-2 and 3.2% at 500 K. In order to maintain the cell at room temperature, a heat transfer coefficient as high as 105 Wm-2 K-1 is required for nanometer-size vacuum gaps. The reason for this is that thermal radiation since thermal radiation enhancement beyond the blackbody from a bulk radiator of tungsten is broadband in nature, while only a certain part of the spectrum is useful for maximizing nano-TPV performance. In future studies, near-field radiation spectral conditions leading to optimal performance characteristics of the device will be investigated.
[PHYS.MECA.THER] Physics/Mechanics/Thermics, [ SPI.MECA.THER ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph], Energy conversion, Thermal effects, [ PHYS.MECA.THER ] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph], [SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph], [PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph], Nanoscale-gap thermophotovoltaic, [SPI.MECA.THER] Engineering Sciences/Mechanics/Thermics, Near-field thermal radiation
[PHYS.MECA.THER] Physics/Mechanics/Thermics, [ SPI.MECA.THER ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph], Energy conversion, Thermal effects, [ PHYS.MECA.THER ] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph], [SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph], [PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph], Nanoscale-gap thermophotovoltaic, [SPI.MECA.THER] Engineering Sciences/Mechanics/Thermics, Near-field thermal radiation
3 Research products, page 1 of 1
- 2010IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).170 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
