Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Functional Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Functional Ecology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2018
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other literature type . 2018
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Functional Ecology
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest

Authors: van der Sande, M.T.; Arets, E.J.M.M.; Pena Claros, M.; Hoosbeek, M.R.; Caceres-Siani, Yasmani; van de Hout, P.; Poorter, L.;

Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest

Abstract

Abstract Tropical forests store and sequester large amounts of carbon in above‐ and below‐ground plant biomass and soil organic matter (SOM), but how these are driven by abiotic and biotic factors remains poorly understood. Here, we test the effects of abiotic factors (light variation, caused by logging disturbance, and soil fertility) and biotic factors (species richness and functional trait composition) on biomass stocks (above‐ground biomass, fine root biomass), SOM and productivity in a relatively monodominant Guyanese tropical rainforest. This forest grows on nutrient‐poor soils and has few species that contribute most to total abundance. We, therefore, expected strong effects of soil fertility and species’ traits that determine resource acquisition and conservation, but not of diversity. We evaluated 6 years of data for 30 0.4‐ha plots and tested hypotheses using structural equation models. Disturbance increased productivity but decreased above‐ground biomass stocks. Soil phosphorus (P) enhanced above‐ground biomass and productivity, whereas soil nitrogen reduced fine root biomass. In contrast to expectations, trait values representing acquisitive strategies (e.g. high leaf nutrient concentration) increased biomass stocks, possibly because they indicate higher nutrient absorption and thus higher biomass build‐up. However, under harsh conditions where biomass increase is slow, acquisitive trait values may increase respiration and vulnerability to hazards and therefore increase biomass loss. As expected, species richness did not affect productivity. We conclude that light availability (through disturbance) and soil fertility—especially P—strongly limit forest biomass productivity and stocks in this Guyanese forest. Low P availability may cause strong environmental filtering, which in turn results in a small set of dominant species. As a result, community trait composition but not species richness determines productivity and stocks of biomass and SOM in tropical forest on poor soils. A plain language summary is available for this article.

Country
Netherlands
Keywords

Chair Soil Chemistry and Chemical Soil Quality, Bodemscheikunde en Chemische Bodemkwaliteit, fine root biomass, Bos- en Landschapsecologie, Leerstoelgroep Bosecologie en bosbeheer, diversity, soil organic matter, forest and landscape ecology, Alterra - Vegetation, Alterra - Vegetatie, Bosecologie en Bosbeheer, Forest and Landscape Ecology, functional traits, Vegetatie, biodiversity–ecosystem functioning, WIMEK, Vegetation, biomass, soil fertility, PE&RC, Forest Ecology and Forest Management, logging disturbance, niche complementarity, mass-ratio hypothesis, Soil Chemistry and Chemical Soil Quality, bos- en landschapsecologie

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 1%
Top 10%
Top 1%
bronze