Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Animal Ec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Animal Ecology
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod

Authors: Fei Zhao; Ary A. Hoffmann; Chun-Sen Ma; Wei Zhang;

Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod

Abstract

Summary An asymmetric increase in night‐time temperatures (NTs) on hot days is one of the main features of global climate change. But the biological effects of an increased night‐time temperature combined with high daytime temperature are unclear. We used six thermal regimens to simulate NTs on hot days and investigated the effects of night warming on life‐history traits of the English grain aphid Sitobion avenae. Experimental temperatures fluctuated in continuous diurnal cycles, increasing from 27 °C to a maximum 35 °C and then declining to 27 °C gradually before further dropping to different minima (13, 16, 19, 21, 23 or 25 °C) representing NTs. When compared to expectations based on constant temperatures, night warming raised the optimum temperature for development by 3 °C, in contrast to results from experiments where temperature variability was altered symmetrically or in a parallel manner. Night warming also reduced aphid survival under heat from 75% to 37% and depressed adult performance by up to 50%. Overall, night warming exacerbated the detrimental effects of hot days on the intrinsic rate of population increase, which was predicted to drop by 30% when night‐time minimum temperatures exceeded 20 °C. Our novel findings on development challenge the ‘Kaufmann effect’, suggesting this is inapplicable to night warming likely to be encountered in nature. Although many average temperature models predict increasing pest outbreaks, our results suggest that outbreaks of some species might decrease due to the effects of night warming on population dynamics.

Keywords

Nymph, Hot Temperature, Climate Change, Reproduction, Longevity, Circadian Rhythm, Aphids, Beijing, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 1%
Top 10%
Top 10%
bronze