Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Croatian Scientific ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Microbiology
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temperature and phosphorus interacts in controlling the picoplankton carbon flux in the Adriatic Sea: an experimental versus field study

Authors: Mladen Šolić; Danijela Šantić; Stefanija Šestanović; Natalia Bojanić; Slaven Jozić; Ana Vrdoljak; Marin Ordulj; +1 Authors

Temperature and phosphorus interacts in controlling the picoplankton carbon flux in the Adriatic Sea: an experimental versus field study

Abstract

Temperature and phosphorus positively interacted in controlling picoplankton biomass production and its transfer towards higher trophic levels. Two complementary approaches (experimental and field study) indicated several coherent patterns: (1) the impact of temperature on heterotrophic bacteria was high at temperatures lower than 16°C and levelled off at higher temperatures, whereas this impact on autotrophic picoplankton was linear along the entire range of the investigated temperatures; (2) the addition of phosphorus increased the values of picoplankton production and grazing, but did not change the nature of their relationships with temperature substantially; (3) the picoplankton carbon flux towards higher trophic levels was larger during the warmer months (grazing by HNF dominated during the warmer period and by ciliates during the colder period) and also strengthened in conditions without phosphorus limitation; (4) the hypothesis that the available phosphorus can be better utilized at higher temperatures was confirmed for both autotrophic and heterotrophic picoplankton; (5) the hypothesis that the rise in temperature stimulates growth only in conditions of sufficient phosphorus was confirmed only for heterotrophic bacteria. Therefore, in the global warming scenario, an increase of the picoplankton carbon flux towards higher trophic levels can be expected in the Adriatic Sea, particularly under unlimited phosphorus conditions.

Country
Croatia
Keywords

Autotrophic Processes, Bacteria, Oceans and Seas, Temperature, picoplankton, Heterotrophic Processes, Phosphorus, Plankton, Carbon Cycle, Temperature ; phosphorus ; picoplankton, Biomass, phosphorus

Powered by OpenAIRE graph
Found an issue? Give us feedback