Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade do Minh...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Microbiology Reports
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Responses of microbial decomposers to drought in streams may depend on the environmental context

Authors: Duarte, Sofia Alexandra Ferreira; Mora-Gómez, Juanita; Romaní, Anna M.; Cássio, Fernanda; Pascoal, Cláudia;

Responses of microbial decomposers to drought in streams may depend on the environmental context

Abstract

SummaryA consequence of drought in streams is the emersion of decomposing leaf litter, which may alter organic matter recycling. We assessed the effects of emersion on decomposition of black poplar leaves and associated microbes (microbial biomass, extracellular enzyme activities and microbial diversity) in two streams with distinct characteristics, in particular nutrients, temperature and oxygen levels. Leaf decomposition rates, fungal biomass and extracellular enzyme activities were lower in the most impacted stream (high nutrients and temperature, low oxygen). Also, the structure of fungal and bacterial communities differed between streams. Emersion strongly affected all microbial functional measures. Leaf decomposition, fungal biomass and extracellular enzyme activities were more sensitive at the most pristine site, while fungal reproduction and bacterial biomass production were more affected by emersion at the most impacted stream. Microbial community structure was strongly altered after emersion. Although similar effects on leaf‐associated microbes were found in both streams, functional responses to emersion differed probably as a consequence of different initial microbial communities with different sensitivity to the drying stress. Our study highlights the need of understanding the effects of drought in streams suffering from different environmental perturbations, since responses to emersion appear to depend on the environmental context.

Country
Portugal
Keywords

litter decomposition, Bacterial Physiological Phenomena, Rivers, Biomass, bacteria, Ciências Naturais::Ciências Biológicas, Science & Technology, Bacteria, leaf emersion, Fungi, Temperature, Adaptation, Physiological, Droughts, Enzymes, Plant Leaves, Biodegradation, Environmental, Populus, enzyme activities, fungi, Water Microbiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%