
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Responses of microbial decomposers to drought in streams may depend on the environmental context

SummaryA consequence of drought in streams is the emersion of decomposing leaf litter, which may alter organic matter recycling. We assessed the effects of emersion on decomposition of black poplar leaves and associated microbes (microbial biomass, extracellular enzyme activities and microbial diversity) in two streams with distinct characteristics, in particular nutrients, temperature and oxygen levels. Leaf decomposition rates, fungal biomass and extracellular enzyme activities were lower in the most impacted stream (high nutrients and temperature, low oxygen). Also, the structure of fungal and bacterial communities differed between streams. Emersion strongly affected all microbial functional measures. Leaf decomposition, fungal biomass and extracellular enzyme activities were more sensitive at the most pristine site, while fungal reproduction and bacterial biomass production were more affected by emersion at the most impacted stream. Microbial community structure was strongly altered after emersion. Although similar effects on leaf‐associated microbes were found in both streams, functional responses to emersion differed probably as a consequence of different initial microbial communities with different sensitivity to the drying stress. Our study highlights the need of understanding the effects of drought in streams suffering from different environmental perturbations, since responses to emersion appear to depend on the environmental context.
- University of Girona Spain
- University of Minho Portugal
- University of Girona Spain
litter decomposition, Bacterial Physiological Phenomena, Rivers, Biomass, bacteria, Ciências Naturais::Ciências Biológicas, Science & Technology, Bacteria, leaf emersion, Fungi, Temperature, Adaptation, Physiological, Droughts, Enzymes, Plant Leaves, Biodegradation, Environmental, Populus, enzyme activities, fungi, Water Microbiology
litter decomposition, Bacterial Physiological Phenomena, Rivers, Biomass, bacteria, Ciências Naturais::Ciências Biológicas, Science & Technology, Bacteria, leaf emersion, Fungi, Temperature, Adaptation, Physiological, Droughts, Enzymes, Plant Leaves, Biodegradation, Environmental, Populus, enzyme activities, fungi, Water Microbiology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
