
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Predictions of climate change infer increased environmental harshness and altered connectivity in a cluster of temporary pools

Summary Future moderate changes in evaporation and precipitation regimes could have pronounced effects on zooplankton populations in small and temporary aquatic habitats, by causing higher salinity and a shorter wet phase and by reducing passive dispersal via hydrological connections between pools and increasing it by exposing propagules to the wind. Using a hydrological model, we simulated various climate change scenarios in a natural cluster of temporary rock pools in South Africa. In our simulations, a shift towards a drier climate was associated with reduced permanence and increased conductivity, resulting in a lower percentage of inundations sufficient for the hatching, growth and reproduction of aquatic organisms (up to a 21% decline for a fairy shrimp). Connections between pools by overflowing occurred less frequently (by up to 28%). However, more frequent desiccation events (by up to 15%) led to increased exposure of dormant propagules to wind, possibly promoting dispersal within the pool cluster but also leading to losses from the propagule bank. Our results suggest that environmental change might not only affect local (within‐pool) selection pressures but also regional dynamics in rock pool metapopulations and communities.
- Vrije Universiteit Brussel Belgium
- KU Leuven Belgium
- Katholieke Universiteit Leuven Belgium
zooplankton, rock pools, environmental change, South Africa, climate change, Hydrological modelling
zooplankton, rock pools, environmental change, South Africa, climate change, Hydrological modelling
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
