
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes

pmid: 30372571
pmc: PMC6392126
AbstractTerrestrial biogeochemical feedbacks to the climate are strongly modulated by the temperature response of soil microorganisms. Tropical forests, in particular, exert a major influence on global climate because they are the most productive terrestrial ecosystem. We used an elevation gradient across tropical forest in the Andes (a gradient of 20°C mean annual temperature, MAT), to test whether soil bacterial and fungal community growth responses are adapted to long‐term temperature differences. We evaluated the temperature dependency of soil bacterial and fungal growth using the leucine‐ and acetate‐incorporation methods, respectively, and determined indices for the temperature response of growth: Q10 (temperature sensitivity over a given 10oC range) and Tmin (the minimum temperature for growth). For both bacterial and fungal communities, increased MAT (decreased elevation) resulted in increases in Q10 and Tmin of growth. Across a MAT range from 6°C to 26°C, the Q10 and Tmin varied for bacterial growth (Q10–20 = 2.4 to 3.5; Tmin = −8°C to −1.5°C) and fungal growth (Q10–20 = 2.6 to 3.6; Tmin = −6°C to −1°C). Thus, bacteria and fungi did not differ significantly in their growth temperature responses with changes in MAT. Our findings indicate that across natural temperature gradients, each increase in MAT by 1°C results in increases in Tmin of microbial growth by approximately 0.3°C and Q10–20 by 0.05, consistent with long‐term temperature adaptation of soil microbial communities. A 2°C warming would increase microbial activity across a MAT gradient of 6°C to 26°C by 28% to 15%, respectively, and temperature adaptation of microbial communities would further increase activity by 1.2% to 0.3%. The impact of warming on microbial activity, and the related impact on soil carbon cycling, is thus greater in regions with lower MAT. These results can be used to predict future changes in the temperature response of microbial activity over different levels of warming and over large temperature ranges, extending to tropical regions.
- University of Edinburgh United Kingdom
- Lund University, Lund, Sweden Sweden
- Australian National University Australia
- Pontificia Universidad Católica del Perú CENTRUM Peru
- Lund University Sweden
Atmospheric sciences, 550, Climate Change, Soil Science, Forests, Biogeochemical cycle, Models, Biological, Environmental science, Carbon Cycle, Agricultural and Biological Sciences, Soil, Terrestrial ecosystem, Genetics, Climate change, Biology, Global change, Soil Microbiology, Ecosystem, Tropical Climate, Bacterial growth, Ecology, Adaptation (eye), Bacteria, Altitude, Temperature, Marine Microbial Diversity and Biogeography, Tropics, Life Sciences, Microbial Diversity in Antarctic Ecosystems, Geology, FOS: Earth and related environmental sciences, Primary Research Articles, Adaptation, Physiological, FOS: Biological sciences, Environmental Science, Physical Sciences, Soil Carbon Dynamics and Nutrient Cycling in Ecosystems, Neuroscience
Atmospheric sciences, 550, Climate Change, Soil Science, Forests, Biogeochemical cycle, Models, Biological, Environmental science, Carbon Cycle, Agricultural and Biological Sciences, Soil, Terrestrial ecosystem, Genetics, Climate change, Biology, Global change, Soil Microbiology, Ecosystem, Tropical Climate, Bacterial growth, Ecology, Adaptation (eye), Bacteria, Altitude, Temperature, Marine Microbial Diversity and Biogeography, Tropics, Life Sciences, Microbial Diversity in Antarctic Ecosystems, Geology, FOS: Earth and related environmental sciences, Primary Research Articles, Adaptation, Physiological, FOS: Biological sciences, Environmental Science, Physical Sciences, Soil Carbon Dynamics and Nutrient Cycling in Ecosystems, Neuroscience
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).112 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
