Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Empirical orthogonal function regression: Linking population biology to spatial varying environmental conditions using climate projections

Authors: Michael A. Litzow; James T. Thorson; James N. Ianelli; Wei Cheng; Wei Cheng; Cecilia A. O'Leary; Albert J. Hermann; +2 Authors

Empirical orthogonal function regression: Linking population biology to spatial varying environmental conditions using climate projections

Abstract

AbstractEcologists and oceanographers inform population and ecosystem management by identifying the physical drivers of ecological dynamics. However, different research communities use different analytical tools where, for example, physical oceanographers often apply rank‐reduction techniques (a.k.a. empirical orthogonal functions [EOF]) to identify indicators that represent dominant modes of physical variability, whereas population ecologists use dynamical models that incorporate physical indicators as covariates. Simultaneously modeling physical and biological processes would have several benefits, including improved communication across sub‐fields; more efficient use of limited data; and the ability to compare importance of physical and biological drivers for population dynamics. Here, we develop a new statistical technique, EOF regression, which jointly models population‐scale dynamics and spatially distributed physical dynamics. EOF regression is fitted using maximum‐likelihood techniques and applies a generalized EOF analysis to environmental measurements, estimates one or more time series representing modes of environmental variability, and simultaneously estimates the association of this time series with biological measurements. By doing so, it identifies a spatial map of environmental conditions that are best correlated with annual variability in the biological process. We demonstrate this method using a linear (Ricker) model for early‐life survival (“recruitment”) of three groundfish species in the eastern Bering Sea from 1982 to 2016, combined with measurements and end‐of‐century projections for bottom and sea surface temperature. Results suggest that (a) we can forecast biological dynamics while applying delta‐correction and statistical downscaling to calibrate measurements and projected physical variables, (b) physical drivers are statistically significant for Pacific cod and walleye pollock recruitment, (c) separately analyzing physical and biological variables fails to identify the significant association for walleye pollock, and (d) cod and pollock will likely have reduced recruitment given forecasted temperatures over future decades.

Keywords

Climate, Climate Change, Population Dynamics, Gadiformes, Animals, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%