
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Genomic vulnerability to rapid climate warming in a tree species with a long generation time

doi: 10.1111/gcb.15469
pmid: 33345407
AbstractThe ongoing increase in global temperature affects biodiversity, especially in mountain regions where climate change is exacerbated. As sessile, long‐lived organisms, trees are especially challenged in terms of adapting to rapid climate change. Here, we show that low rates of allele frequency shifts in Swiss stone pine (Pinus cembra) occurring near the treeline result in high genomic vulnerability to future climate warming, presumably due to the species’ long generation time. Using exome sequencing data from adult and juvenile cohorts in the Swiss Alps, we found an average rate of allele frequency shift of 1.23 × 10−2/generation (i.e. 40 years) at presumably neutral loci, with similar rates for putatively adaptive loci associated with temperature (0.96 × 10−2/generation) and precipitation (0.91 × 10−2/generation). These recent shifts were corroborated by forward‐in‐time simulations at neutral and adaptive loci. Additionally, in juvenile trees at the colonisation front we detected alleles putatively beneficial under a future warmer and drier climate. Notably, the observed past rate of allele frequency shift in temperature‐associated loci was decidedly lower than the estimated average rate of 6.29 × 10−2/generation needed to match a moderate future climate scenario (RCP4.5). Our findings suggest that species with long generation times may have difficulty keeping up with the rapid climate change occurring in high mountain areas and thus are prone to local extinction in their current main elevation range.
- ETH Zurich Switzerland
- University of Zurich Switzerland
Climate Change, Biodiversity, Genomics, Pinus, Trees
Climate Change, Biodiversity, Genomics, Pinus, Trees
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).74 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
