Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global assessment of marine and freshwater recreational fish reveals mismatch in climate change vulnerability and conservation effort

Authors: Elizabeth A. Nyboer; Hsien‐Yung Lin; Joseph R. Bennett; Joseph Gabriel; William Twardek; Auston D. Chhor; Lindsay Daly; +10 Authors

Global assessment of marine and freshwater recreational fish reveals mismatch in climate change vulnerability and conservation effort

Abstract

AbstractRecreational fisheries contribute substantially to the sociocultural and economic well‐being of coastal and riparian regions worldwide, but climate change threatens their sustainability. Fishery managers require information on how climate change will impact key recreational species; however, the absence of a global assessment hinders both directed and widespread conservation efforts. In this study, we present the first global climate change vulnerability assessment of recreationally targeted fish species from marine and freshwater environments (including diadromous fishes). We use climate change projections and data on species’ physiological and ecological traits to quantify and map global climate vulnerability and analyze these patterns alongside the indices of socioeconomic value and conservation effort to determine where efforts are sufficient and where they might fall short. We found that over 20% of recreationally targeted fishes are vulnerable to climate change under a high emission scenario. Overall, marine fishes had the highest number of vulnerable species, concentrated in regions with sensitive habitat types (e.g., coral reefs). However, freshwater fishes had higher proportions of species at risk from climate change, with concentrations in northern Europe, Australia, and southern Africa. Mismatches in conservation effort and vulnerability were found within all regions and life‐history groups. A key pattern was that current conservation effort focused primarily on marine fishes of high socioeconomic value rather than on the freshwater and diadromous fishes that were predicted to be proportionately more vulnerable. While several marine regions were notably lacking in protection (e.g., Caribbean Sea, Banda Sea), only 19% of vulnerable marine species were without conservation effort. By contrast, 72% of freshwater fishes and 33% of diadromous fishes had no measures in place, despite their high vulnerability and cultural value. The spatial and taxonomic analyses presented here provide guidance for the future conservation and management of recreational fisheries as climate change progresses.

Keywords

Conservation of Natural Resources, Climate Change, Fisheries, Fishes, Fresh Water, Animals, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
bronze