
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Testing the match–mismatch hypothesis in bighorn sheep in the context of climate change

doi: 10.1111/gcb.15923
pmid: 34619002
AbstractIn species with long gestation, females commit to reproduction several months before parturition. If cues driving conception date are uncoupled from spring conditions, parturition could be mistimed. Mismatch may increase with global change if the rate of temporal changes in autumn cues differs from the rate of change in spring conditions. Using 17 years of data on climate and vegetation phenology, we show that autumn temperature and precipitation, but not vegetation phenology, explain parturition date in bighorn sheep. Although autumn cues drive the timing of conception, they do not predict conditions at parturition in spring. We calculated the mismatch between individual parturition date and spring green‐up, assessed whether mismatch increased over time and investigated the consequences of mismatch on lamb neonatal survival, weaning mass and overwinter survival. Mismatch fluctuated over time but showed no temporal trend. Temporal changes in green‐up date did not lead to major fitness consequence of mismatch. Detailed data on individually marked animals revealed no effect of mismatch on neonatal or overwinter survival, but lamb weaning mass was negatively affected by mismatch. Capital breeders might be less sensitive to mismatch than income breeders because they are less dependent on daily food acquisition. Herbivores in seasonal environments may access sufficient forage to sustain lactation before or after the spring ‘peak’ green‐up, and partly mitigate the consequences of a mismatch. Thus, the effect of phenological mismatch on fitness may be affected by species life history, highlighting the complexity in quantifying trophic mismatches in the context of climate change.
- McGill University Canada
- University of Quebec Canada
- Université de Sherbrooke Canada
Sheep, Climate Change, Temperature, Sheep, Bighorn, Animals, Female, Herbivory, Seasons
Sheep, Climate Change, Temperature, Sheep, Bighorn, Animals, Female, Herbivory, Seasons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
