Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Change Biology
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
Global Change Biology
Article . 2022 . Peer-reviewed
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Are Mediterranean marine threatened species at high risk by climate change?

Authors: Chatzimentor, Anastasia; Doxa, Aggeliki; Katsanevakis, Stelios; Mazaris, Antonios D.;

Are Mediterranean marine threatened species at high risk by climate change?

Abstract

AbstractRapid anthropogenic climate change is driving threatened biodiversity one step closer to extinction. Effects on native biodiversity are determined by an interplay between species' exposure to climate change and their specific ecological and life‐history characteristics that render them even more susceptible. Impacts on biodiversity have already been reported, however, a systematic risk evaluation of threatened marine populations is lacking. Here, we employ a trait‐based approach to assess the risk of 90 threatened marine Mediterranean species to climate change, combining species' exposure to increased sea temperature and intrinsic vulnerability. One‐quarter of the threatened marine biodiversity of the Mediterranean Sea is predicted to be under elevated levels of climate risk, with various traits identified as key vulnerability traits. High‐risk taxa including sea turtles, marine mammals, Anthozoa and Chondrichthyes are highlighted. Climate risk, vulnerability and exposure hotspots are distributed along the Western Mediterranean, Alboran, Aegean, and Adriatic Seas. At each Mediterranean marine ecoregion, 21%–31% of their threatened species have high climate risk. All Mediterranean marine protected areas host threatened species with high risk to climate change, with 90% having a minimum of 4 up to 19 species of high climate risk, making the objective of a climate‐smart conservation strategy a crucial task for immediate planning and action. Our findings aspire to offer new insights for systematic, spatially strategic planning and prioritization of vulnerable marine life in the face of accelerating climate change.

Keywords

Conservation of Natural Resources, Climate Change, Endangered Species, Biodiversity, Caniformia, Mediterranean Sea, Animals, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
hybrid