Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying past, current, and future forest carbon stocks within agroforestry systems in central Alberta, Canada

Authors: Zhengfeng An; Edward W. Bork; Xinyi Duan; Cole D. Gross; Cameron N. Carlyle; Scott X. Chang;

Quantifying past, current, and future forest carbon stocks within agroforestry systems in central Alberta, Canada

Abstract

AbstractInformation about regional‐level carbon (C) stocks in agroforestry systems (AFS), as well as the annual loss of agroforests and associated C stocks, is scarce, limiting our capacity for increasing C sequestration through establishing, retaining, and enhancing these systems. This study quantified regional‐level C stocks and the associated incremental economic value in the forest land‐use component of three common AFS (hedgerows, shelterbelts, and silvopastures), estimated the annual loss of hedgerow and silvopasture forests and the associated C, and assessed the potential to enhance C storage through the expansion of shelterbelts in central Alberta, Canada, using publicly available satellite imagery, previously collected field data and the Google Earth Engine platform. Results showed that forests in the three AFS stored 699.9 million tons (Mt) C across 9.5 million hectares (Mha) of land in central Alberta and were valued at $102.7 billion based on the 2021 Canadian C tax rate of $40 t−1 CO2‐equivalent. Silvopasture forests in the studied region had the highest C stocks, which were 14.2 and 67.2 times that found in hedgerow and shelterbelt forests, respectively. Between 2001 and 2020, forests in hedgerows and silvopastures declined at rates of 468.1 and 1957.1 ha year−1, respectively, leading to an 8.4 Mt decline in total C storage over the 20 years. However, there is potential to establish new shelterbelts at many road/field margins, which could increase C stocks by 2.3 times the current C stocks in shelterbelt forests. These results highlight the importance of retaining existing and establishing new AFS for increasing C sequestration, emphasizing the impact of agroforest loss on reducing C storage within agroecosystems. The development of policies that assist or reward landowners for providing the ecosystem service of C storage by retaining, establishing, and enhancing agroforests as part of existing agroecosystem management should be encouraged for mitigating climate change.

Related Organizations
Keywords

carbon tax, TJ807-830, carbon storage, carbon sequestration, Energy industries. Energy policy. Fuel trade, Renewable energy sources, forest loss, agroforestry systems, HD9502-9502.5, Google Earth Engine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold