Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno‐economic and life cycle analysis of renewable natural gas derived from anaerobic digestion of grassy biomass: A US Corn Belt watershed case study

Authors: Olumide Olafasakin; Ellen M. Audia; Mark Mba‐Wright; John C. Tyndall; Lisa A. Schulte;

Techno‐economic and life cycle analysis of renewable natural gas derived from anaerobic digestion of grassy biomass: A US Corn Belt watershed case study

Abstract

AbstractRestoring native grassland vegetation can substantially improve ecosystem service outcomes from agricultural watersheds, but profitable pathways are needed to incentivize conversion from conventional crops. Given growing demand for renewable energy, using grassy biomass to produce biofuels provides a potential solution. We assessed the techno‐economic feasibility and life cycle outcomes of a “grass‐to‐gas” pathway that includes harvesting grassy (lignocellulosic) biomass for renewable natural gas (RNG) production through anaerobic digestion (AD), expanding on previous research that quantified ecosystem service and landowner financial outcomes of simulated grassland restoration in the Grand River Basin of Iowa and Missouri, United States. We found that the amount of RNG produced through AD of grassy biomass ranged 0.12–45.04 million gigajoules (GJ), and the net present value (NPV) of the RNG ranged −$97 to $422 million, depending on the combination of land use, productivity, and environmental credit scenarios. Positive NPVs are achieved with environmental credits for replacement of synthetic agricultural inputs with digestate and clean fuel production (e.g., USEPA D3 Renewable Identification Number, California Low Carbon Fuel Standard). Producing RNG from grassy biomass emits 15.1 g CO2‐eq/MJ, which compares favorably to the fossil natural gas value of 61.1 g CO2‐eq/MJ and exceeds the US Environmental Protection Agency's requirement for cellulosic biofuel. Overall, this study demonstrates opportunities and limitations to using grassy biomass from restored grasslands for sustainable RNG production.

Country
United States
Related Organizations
Keywords

330, TJ807-830, Energy industries. Energy policy. Fuel trade, 333, Renewable energy sources, DegreeDisciplines::Engineering::Mechanical Engineering::Energy Systems, bioeconomy, lignocellulosic biofuel, low carbon fuel, advanced biofuel, DegreeDisciplines::Physical Sciences and Mathematics::Environmental Sciences::Natural Resources Management and Policy, grassland restoration, greenhouse gas, DegreeDisciplines::Social and Behavioral Sciences::Agricultural and Resource Economics, HD9502-9502.5, ecosystem services

Powered by OpenAIRE graph
Found an issue? Give us feedback