
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Soil microbial biomass increases along elevational gradients in the tropics and subtropics but not elsewhere

AbstractAimOur aim is to use elevational gradients to quantify the relationship between temperature and ecosystem functioning. Ecosystem functions such as decomposition, nutrient cycling and carbon storage are linked with the amount of microbial biomass in the soil. Previous studies have shown variable relationships between elevation and soil microbial biomass (SMB). Understanding the biological mechanisms linking SMB with elevational gradients will shed light on the environmental impacts of global warming.LocationGlobal.Time period2002–2018.Major taxa studiedSoil microbes.MethodWe performed a global meta‐analysis of the relationships between SMB and elevation. Data were collected from 59 studies of 73 elevational transects from around the world.ResultsWe found no consistent global relationship between SMB and elevation. SMB increased significantly with elevation in the tropics and subtropics, but not in other climate zones. However, we found consistent positive relationships between SMB, soil organic carbon and total nitrogen concentrations.Main conclusionsOur results suggest that global warming will impact tropical and subtropical ecosystems more severely than colder regions. Tropical ecosystems, already at risk from species extinctions, will likely experience declines in SMB as the climate warms, resulting in losses of fundamental ecosystem functions such as nutrient cycling and carbon storage.
- Sun Yat-sen University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Royal Netherlands Academy of Arts and Sciences (KNAW) Netherlands
- Royal Netherlands Academy of Arts and Sciences Netherlands
elevation, Plan_S-Compliant_NO, global warming, soil microbial biomass, meta-analysis, soil organic carbon, climate change, international, Global environmental change
elevation, Plan_S-Compliant_NO, global warming, soil microbial biomass, meta-analysis, soil organic carbon, climate change, international, Global environmental change
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).45 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
