Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Ecology and B...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Article . 2020
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Other literature type . 2020
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Ecology and Biogeography
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global analysis of fish growth rates shows weaker responses to temperature than metabolic predictions

Authors: Daniël van Denderen; Henrik Gislason; Joost van den Heuvel; Ken H. Andersen;

Global analysis of fish growth rates shows weaker responses to temperature than metabolic predictions

Abstract

AbstractAimHigher temperatures increase the metabolic rate of ectothermic organisms up to a certain level and make them grow faster. This temperature‐sensitivity of growth is frequently used to predict the long‐term effects of climate warming on ectotherms. Yet, realized growth also depends on ecological factors and evolutionary adaptation. Here we study whether faster growth is observed along temperature clines within and between marine fish species from polar to tropical regions.LocationGlobal.Time periodThe sampling or publication year is for 718 observations before 1980, 1,073 observations between 1980 and 2000, and 390 observations after 2000 (for 336 observations no year was recorded).Major taxa studiedMarine teleost fish and elasmobranchs.MethodsThe effects of temperature on fish growth are studied using 2,517 growth observations, representing 771 species in 165 marine ecoregions. The effects of temperature are presented with a Q10, describing relative increase in the rate of growth for each 10 °C increase.ResultsWe find weak within‐ and between‐species effects of temperature on growth. The typical within‐species effect of temperature has a Q10 of 1.1. The between‐species effect is a little higher (Q10 = 1.4, or Q10 = 1.2 when corrected for phylogenetic relationships). When analysed per fish guild, growth responses vary from nearly independent of temperature in large demersals (Q10 = 1.1) to positive in small pelagics (Q10 = 1.6) and elasmobranchs (Q10 = 2.3). Average growth is higher in ecoregions with high primary production.Main conclusionThe change in average growth along temperature clines is weaker than predicted by metabolic theory, suggesting that the metabolic predictions are not sustainable in an ecosystem context. The long‐term response of fish to the increase in temperature associated with climate change may hence be shaped more by local environmental and ecological dynamics than by the physiological temperature response of the species currently present.

Countries
Netherlands, Denmark
Keywords

Metabolic theory, /dk/atira/pure/sustainabledevelopmentgoals/life_below_water; name=SDG 14 - Life Below Water, Ecotherms, ectotherms, metabolic theory, Marine fish, climate change, marine fish, Climate change, Temperature response, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action, von Bertalanffy growth, temperature response

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Green
bronze