Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Ecology and B...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Ecology and Biogeography
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2023
License: CC BY
Data sources: CONICET Digital
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rarity, geography, and plant exposure to global change in the California Floristic Province

Authors: Miranda Brooke Rose; Santiago José Elías Velazco; Helen M. Regan; Janet Franklin;

Rarity, geography, and plant exposure to global change in the California Floristic Province

Abstract

AbstractAimRarity and geographic aspects of species distributions mediate their vulnerability to global change. We explore the relationships between species rarity and geography and their exposure to climate and land use change in a biodiversity hotspot.LocationCalifornia, USA.TaxaOne hundred and six terrestrial plants.MethodsWe estimated four rarity traits: range size, niche breadth, number of habitat patches, and patch isolation; and three geographic traits: mean elevation, topographic heterogeneity, and distance to coast. We used species distribution models to measure species exposure—predicted change in continuous habitat suitability within currently occupied habitat—under climate and land use change scenarios. Using regression models, decision‐tree models and variance partitioning, we assessed the relationships between species rarity, geography, and exposure to climate and land use change.ResultsRarity, geography and greenhouse gas emissions scenario explained >35% of variance in climate change exposure and >61% for land use change exposure. While rarity traits (range size and number of habitat patches) were most important for explaining species exposure to climate change, geographic traits (elevation and topographic heterogeneity) were more strongly associated with species' exposure to land use change.Main conclusionsSpecies with restricted range sizes and low topographic heterogeneity across their distributions were predicted to be the most exposed to climate change, while species at low elevations were the most exposed to habitat loss via land use change. However, even some broadly distributed species were projected to lose >70% of their currently suitable habitat due to climate and land use change if they are in geographically vulnerable areas, emphasizing the need to consider both species rarity traits and geography in vulnerability assessments.

Country
Argentina
Keywords

land use change, expouser, climate change, https://purl.org/becyt/ford/1.6, rarity, topographic heterogeneity, spatial traits, https://purl.org/becyt/ford/1, range size

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green
hybrid