
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Trends and temperature response in the phenology of crops in Germany

AbstractThe phenology of 78 agricultural and horticultural events from a national survey in Germany spanning the years 1951–2004 is examined. The majority of events are significantly earlier now than 53 years ago, with a mean advance of 1.1–1.3 days per decade. The mean trends for ‘true phases’, such as emergence and flowering, of annual and perennial crops are not significantly different, although more trends (78% vs. 46%) are significant for annual crops. We attempt to remove the influence of technological advance or altered farming practices on phenology by detrending the respective time series by linear regression of date (day number) on year. Subsequently, we estimate responses to mean monthly and seasonal temperature by correlation and regression in two ways; with and without removing the year trend first. Nearly all (97%) correlation coefficients are negative, suggesting earlier events in warmer years. Between 82% and 94% of the coefficients with seasonal spring and summer temperatures are significant. The conservative estimate (detrended) of mean temperature response against mean March–May temperature (−3.73 days °C−1) is significantly less than the full estimate (−4.31 days °C−1), the ‘true’ size of phenological temperature response may lie in between. Perennial crops exhibited a significantly higher temperature response to mean spring temperature than the annual crops.
- Technical University of Munich Germany
- Natural Environment Research Council United Kingdom
response, horticulture, Botany, temperature, phenology, Ecology and Environment, 333, Meteorology and Climatology, climate change, agriculture
response, horticulture, Botany, temperature, phenology, Ecology and Environment, 333, Meteorology and Climatology, climate change, agriculture
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).246 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
