
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Copepod life cycle adaptations and success in response to phytoplankton spring bloom phenology

AbstractIn a seasonal environment, the timing of reproduction is usually scheduled to maximize the survival of offspring. Within deep water bodies, the phytoplankton spring bloom provides a short time window of high food quantity and quality for herbivores. The onset of algal bloom development, however, varies strongly from year to year due to interannual variability in meteorological conditions. Furthermore, the onset is predicted to change with global warming. Here, we use a long‐term dataset to study (a) how a cyclopoid copepod, Cyclops vicinus, is dealing with the large variability in phytoplankton bloom phenology, and (b) if bloom phenology has an influence on offspring numbers. C. vicinus performed a two‐phase dormancy, that is, the actual diapause of fourth copepodid stages at the lake bottom is followed by a delay in maturation, that is, a quiescence, within the fifth copepodid stage until the start of the spring bloom. This strategy seems to guarantee a high temporal match of the food requirements for successful offspring development, especially through the highly vulnerable naupliar stages, with the phytoplankton spring bloom. However, despite this match with food availability in all study years, offspring numbers, that is, offspring survival rates were higher in years with an early start of the phytoplankton bloom. In addition, the phenology of copepod development suggested that also within study years, early offspring seems to have lower mortality rates than late produced offspring. We suggest that this is due to a longer predator‐free time period and/or reduced time stress for development. Hence, within the present climate variability, the copepod benefited from warmer spring temperatures resulting in an earlier phytoplankton spring bloom. Time will show if the copepod's strategy is flexible enough to cope with future warming.
- University of Konstanz Germany
info:eu-repo/classification/ddc/570, limnologicalinstitute, maturation delay, photoperiod, Cyclops vicinus, diapause, phenological adaptation, rep, climate change, match-mismatch
info:eu-repo/classification/ddc/570, limnologicalinstitute, maturation delay, photoperiod, Cyclops vicinus, diapause, phenological adaptation, rep, climate change, match-mismatch
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
