
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biomass‐dependent susceptibility to drought in experimental grassland communities

pmid: 17498139
AbstractEarlier studies indicated that plant diversity influences community resistance in biomass when ecosystems are exposed to perturbations. This relationship remains controversial, however. Here we constructed grassland communities to test the relationships between species diversity and productivity under control and experimental drought conditions. Species richness was not correlated with biomass either under constant conditions or under drought conditions. However, communities with lower biomass production were more resistant to drought stress than those that were more productive. Our results also showed that ecosystem resistance to drought is a decreasing but nonlinear function of biomass. In contrast, species diversity had little and an equivocal effect on ecosystem resistance. From the results reported here, and the results of several previous studies, we suggest that high biomass systems exhibited a greater biomass reduction in response to drought than low biomass systems did, regardless of the relationship between plant diversity and community biomass production.
- Sun Yat-sen University China (People's Republic of)
- Sun Yat-sen University China (People's Republic of)
Species Specificity, Biomass, Poaceae, Ecosystem
Species Specificity, Biomass, Poaceae, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).94 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
