Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology Letters
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology Letters
Article . 2010
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future

Authors: Gary A. Kendrick; Thomas Wernberg; Thomas Wernberg; Fernando Tuya; Benjamin D. Toohey; Mads S. Thomsen; Mads S. Thomsen; +1 Authors

Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future

Abstract

Ecology Letters (2010) 13: 685–694AbstractSuccessful mitigation of negative effects of global warming will depend on understanding the link between physiological and ecological responses of key species. We show that while metabolic adjustment may assist Australasian kelp beds to persist and maintain abundance in warmer waters, it also reduces the physiological responsiveness of kelps to perturbation, and suppresses canopy recovery from disturbances by reducing the ecological performance of kelp recruits. This provides a warning not to rely solely on inventories of distribution and abundance to evaluate ecosystem function. The erosion of resilience is mediated by a shift in adult‐juvenile interactions from competitive under cool to facilitative under warm conditions, supporting the prediction that positive interactions may become increasingly important in a warmer future. Kelp beds may remain intact but with a lower threshold for where additional impacts (e.g., extreme storms or reduced water quality) will lead to persistent loss of habitat and ecological function.

Country
Denmark
Keywords

comparative experimental approach, Ocean temperature, linking physiology and ecology, 250203 Bioclimatología, Stress, Global Warming, stress, Comparative experimental approach, threshold, Climate change, 241705 Biología marina, Seawater, Linking physiology and ecology, Ecosystem, human impacts, Human impacts, Australasia, Threshold, disturbance and recovery, Temperature, Adaptation, Physiological, ocean temperature, Ecological function, climate change, Kelp, ecological function, Disturbance and recovery

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    294
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
294
Top 1%
Top 1%
Top 1%