Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao New Phytologistarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Phytologist
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
New Phytologist
Article . 2007
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptation of tree growth to elevated CO2: quantitative trait loci for biomass in Populus

Authors: Rae, A.M.; Tricker, P.J.; Bunn, S.M.; Taylor, G.;

Adaptation of tree growth to elevated CO2: quantitative trait loci for biomass in Populus

Abstract

* Information on the genetic variation of plant response to elevated CO(2) (e[CO(2)]) is needed to understand plant adaptation and to pinpoint likely evolutionary response to future high atmospheric CO(2) concentrations. * Here, quantitative trait loci (QTL) for above- and below-ground tree growth were determined in a pedigree - an F(2) hybrid of poplar (Populus trichocarpa and Populus deltoides), following season-long exposure to either current day ambient CO(2) (a[CO(2)]) or e[CO(2)] at 600 microl l(-1), and genotype by environment interactions investigated. * In the F(2) generation, both above- and below-ground growth showed a significant increase in e[CO(2)]. Three areas of the genome on linkage groups I, IX and XII were identified as important in determining above-ground growth response to e[CO(2)], while an additional three areas of the genome on linkage groups IV, XVI and XIX appeared important in determining root growth response to e[CO(2)]. * These results quantify and identify genetic variation in response to e[CO(2)] and provide an insight into genomic response to the changing environment.

Country
United Kingdom
Related Organizations
Keywords

580, Plant Stems, Acclimatization, Quantitative Trait Loci, Chromosome Mapping, Genetic Variation, Carbon Dioxide, Plant Roots, Pedigree, Populus, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
bronze