Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Alcoholism Clinical and Experimental Research
Article . 1997 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Alcoholism Clinical and Experimental Research
Article . 1997 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DNA Damage, DNA Repair, and Alcohol Toxicity—A Review

Authors: Philip J. Brooks;

DNA Damage, DNA Repair, and Alcohol Toxicity—A Review

Abstract

Alcohol (ethanol) is clearly a toxic substance when consumed in excess. Chronic alcohol abuse results in a variety of pathological effects, including damage to the liver and brain, as well as other organs, and is associated with an increased risk of certain types of cancers. Alcohol consumption by pregnant women can result in fetal alcohol effects and fetal alcohol syndrome. All of these toxic effects are well documented. What is needed at present is a complete understanding of the molecular mechanisms by which alcohol causes these toxic effects. Such an understanding may lead to better treatments of some of these toxic effects. This review, focuses on the possibility that toxic effects of ethanol are mediated, at least in part, by damage to DNA. In particular, I emphasize data on the production of endogenous DNA‐damaging molecules as a result of alcohol consumption and metabolism. Specific examples of DNA‐damaging molecules to be considered are reactive oxygen species, including oxygen radicals, lipid peroxidation products, and acetaldehyde. The relevant DNA repair pathways that protect cells against DNA damage produced by these molecules will also be reviewed. The goal of this review is to integrate recent results from the fields of mutagenesis and DNA repair with the alcohol toxicity literature, with the aim of stimulating research into the role of DNA damage in different types of alcohol toxicity and the role of DNA repair in protecting cells from alcohol‐related damage.

Keywords

DNA Repair, Ethanol, Carcinogenicity Tests, Infant, Newborn, DNA Adducts, Pregnancy, Animals, Humans, Female, Lipid Peroxidation, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    174
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
174
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research