Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Fish Biol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Fish Biology
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

We need to talk about the role of zooplankton in marine food webs

Authors: Robert B. Thorpe;

We need to talk about the role of zooplankton in marine food webs

Abstract

AbstractZooplankton are the key intermediary between primary production and the fish community and a cornerstone of marine food webs, but they are often poorly represented in models that tend to focus on fish, charismatic top predators, or ocean biogeochemistry. In this study, we use an intermediate complexity end‐to‐end food web model of the North Sea with explicit two‐way coupling of zooplankton to phytoplankton and higher trophic levels to ask whether this matters. We vary the metabolic rate of omnivorous zooplankton (OZ) as a proxy for uncertainties in our understanding and modeling of zooplankton form and function, and moving beyond previous studies we look at the impacts on the food web in concert with climate warming and fishing. We consider impacts on food web state and time to recover the relevant unfished state after fishing ceases. We also consider potential impacts on pelagic and demersal fishing fleets if we assume that they are constrained by the requirement to allow recovery to an unfished state within a certain period of time as a way of ensuring consistency with Good Environmental Status as required by EU and UK legislation. We find that all three aspects considered are highly sensitive to changes in the treatment of zooplankton, with impacts being larger than for warming of 2 or 4°C across most food web functional groups, particularly for apex predators. We call for a programme of research aimed at improving our understanding of zooplankton ecology and its relationship to the wider food web, and we recommend that improved representations of zooplankton are incorporated in future modeling studies as a priority.

Keywords

Food Chain, Climate Change, Fisheries, Fishes, Models, Biological, Zooplankton, Phytoplankton, Animals, North Sea

Powered by OpenAIRE graph
Found an issue? Give us feedback