
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Genome‐wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana

Summary Plants are commonly exposed to abiotic and biotic stresses. We used 350 Arabidopsis thaliana accessions grown under controlled conditions. We employed genome‐wide association analysis to investigate the genetic architecture and underlying loci involved in genetic variation in resistance to: two specialist insect herbivores, Pieris rapae and Plutella xylostella; and combinations of stresses, i.e. drought followed by P. rapae and infection by the fungal pathogen Botrytis cinerea followed by infestation by P. rapae. We found that genetic variation in resistance to combined stresses by drought plus P. rapae was limited compared with B. cinerea plus P. rapae or P. rapae alone. Resistance to the two caterpillars is controlled by different genetic components. There is limited overlap in the quantitative trait loci (QTLs) underlying resistance to combined stresses by drought plus P. rapae or B. cinerea plus P. rapae and P. rapae alone. Finally, several candidate genes involved in the biosynthesis of aliphatic glucosinolates and proteinase inhibitors were identified to be involved in resistance to P. rapae and P. xylostella, respectively. This study underlines the importance of investigating plant responses to combinations of stresses. The value of this approach for breeding plants for resistance to combinatorial stresses is discussed.
- Université Wageningen Netherlands
- Wageningen University & Research Netherlands
- WAGENINGEN UNIVERSITY Netherlands
abiotic stress, specialist herbivores, Arabidopsis, Moths, biotic stress, Quantitative Trait, Heritable, Gene Expression Regulation, Plant, Stress, Physiological, Animals, Biomass, Herbivory, Genetic Association Studies, Research, Droughts, combined stresses, genome-wide association, Butterflies, Genome-Wide Association Study
abiotic stress, specialist herbivores, Arabidopsis, Moths, biotic stress, Quantitative Trait, Heritable, Gene Expression Regulation, Plant, Stress, Physiological, Animals, Biomass, Herbivory, Genetic Association Studies, Research, Droughts, combined stresses, genome-wide association, Butterflies, Genome-Wide Association Study
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
