
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Comparative Genomics Unveils the Habitat Adaptation and Metabolic Profiles of Clostridium in an Artificial Ecosystem for Liquor Production

Authors: Guan-Yu Fang; Li-Juan Chai; Xiao-Zhong Zhong; Zhen-Ming Lu; Xiao-Juan Zhang; Lin-Huan Wu; Song-Tao Wang; +3 Authors
Guan-Yu Fang; Li-Juan Chai; Xiao-Zhong Zhong; Zhen-Ming Lu; Xiao-Juan Zhang; Lin-Huan Wu; Song-Tao Wang; Cai-Hong Shen; Jin-Song Shi; Zheng-Hong Xu;
Abstract
Pit mud is a typical artificial ecosystem for Chinese liquor production. Clostridium inhabiting pit mud plays essential roles in the flavor formation of strong-flavor baijiu. The relative abundance of Clostridium increased with pit mud quality, further influencing the quality of baijiu.
Related Organizations
- Jiangnan University China (People's Republic of)
- Institute of Microbiology China (People's Republic of)
- Institute of Microbiology China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
Keywords
Clostridium, Bacteria, Ethanol, pit mud, Alcoholic Beverages, Microbiota, short-chain fatty acids, Genomics, Microbiology, QR1-502, Metabolome, horizontal gene transfer, CAZymes, Research Article
Clostridium, Bacteria, Ethanol, pit mud, Alcoholic Beverages, Microbiota, short-chain fatty acids, Genomics, Microbiology, QR1-502, Metabolome, horizontal gene transfer, CAZymes, Research Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
20
Top 10%
Average
Top 10%
Green
gold
Beta
Fields of Science (3) View all
Fields of Science
Related to Research communities
Energy Research