Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Human & Experimental...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cytotoxicity and uptake of archaeosomes prepared from Aeropyrum pernix lipids

Authors: Nataša Poklar Ulrih; Dejan Gmajner; Tina Batista Napotnik; Janez Valant; Damijan Miklavčič; Sabina Passamonti;

Cytotoxicity and uptake of archaeosomes prepared from Aeropyrum pernix lipids

Abstract

Archaeon Aeropyrum pernix K1 is an obligate aerobic hyperthermophilic organism with C25,25-archeol membrane lipids with head groups containing inositol. Interactions of archaeosomes, liposomes prepared from lipids of A. pernix, with mammalian cells in vitro were studied. In vitro cytotoxicity was tested on five different cell lines: rodent mouse melanoma cells (B16-F1) and Chinese hamster ovary (CHO) cells, and three human cell lines—epithelial colorectal adenocarcinoma cells (CACO-2), liver hepatocellular carcinoma cell line (Hep G2) and endothelial umbilical vein cell line (EA.hy926). Archaeosomes were nontoxic to human Hep G2, CACO-2 and mildly toxic to rodent CHO and B16-F1 cells but showed strong cytotoxic effect on EA.hy926 cells. Confocal microscopy revealed that archaeosomes are taken up by endocytosis. The uptake of archaeosomes and the release of loaded calcein are more prominent in EA.hy926 cells, which is in line with high toxicity toward these cells. The mechanisms of uptake, release and action in these cells as well as in vivo functioning have to be further studied for possible targeted drug delivery.

Related Organizations
Keywords

Drug Carriers, Microscopy, Confocal, Dose-Response Relationship, Drug, Cell Survival, Cell Culture Techniques, Endothelial Cells, Aeropyrum, CHO Cells, Lipids, Endocytosis, Mice, Cricetulus, Microscopy, Fluorescence, Cell Line, Tumor, Cricetinae, Liposomes, Animals, Humans, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
bronze