
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cytotoxicity and uptake of archaeosomes prepared from Aeropyrum pernix lipids

pmid: 23444336
Archaeon Aeropyrum pernix K1 is an obligate aerobic hyperthermophilic organism with C25,25-archeol membrane lipids with head groups containing inositol. Interactions of archaeosomes, liposomes prepared from lipids of A. pernix, with mammalian cells in vitro were studied. In vitro cytotoxicity was tested on five different cell lines: rodent mouse melanoma cells (B16-F1) and Chinese hamster ovary (CHO) cells, and three human cell lines—epithelial colorectal adenocarcinoma cells (CACO-2), liver hepatocellular carcinoma cell line (Hep G2) and endothelial umbilical vein cell line (EA.hy926). Archaeosomes were nontoxic to human Hep G2, CACO-2 and mildly toxic to rodent CHO and B16-F1 cells but showed strong cytotoxic effect on EA.hy926 cells. Confocal microscopy revealed that archaeosomes are taken up by endocytosis. The uptake of archaeosomes and the release of loaded calcein are more prominent in EA.hy926 cells, which is in line with high toxicity toward these cells. The mechanisms of uptake, release and action in these cells as well as in vivo functioning have to be further studied for possible targeted drug delivery.
- University of Ljubljana Slovenia
- University of Trieste Italy
Drug Carriers, Microscopy, Confocal, Dose-Response Relationship, Drug, Cell Survival, Cell Culture Techniques, Endothelial Cells, Aeropyrum, CHO Cells, Lipids, Endocytosis, Mice, Cricetulus, Microscopy, Fluorescence, Cell Line, Tumor, Cricetinae, Liposomes, Animals, Humans, Biomass
Drug Carriers, Microscopy, Confocal, Dose-Response Relationship, Drug, Cell Survival, Cell Culture Techniques, Endothelial Cells, Aeropyrum, CHO Cells, Lipids, Endocytosis, Mice, Cricetulus, Microscopy, Fluorescence, Cell Line, Tumor, Cricetinae, Liposomes, Animals, Humans, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
