
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climate change-associated trends in biomass dynamics are consistent across soil drainage classes in western boreal forests of Canada

Climate change-associated trends in biomass dynamics are consistent across soil drainage classes in western boreal forests of Canada
Abstract Background Consistent long-term declines in net aboveground biomass change have been reported in some boreal and tropical forests. Global change-type drought (i.e., demands of increased evapotranspiration exceeding soil water reserves) has been identified as the main driver for these declines. Despite the focus on reduced water availability, most studies relegate local site soil drainage to a plot random effect. However, if the major cause of some region’s recent loss in net aboveground biomass change is global change-type drought, those soils with less drainage capacity should help buffer against increased evapotranspiration, resulting in less negative effects of global change-type drought on growth, mortality and net biomass change. Methods Here we used a network of 1279 permanent sampling plots, measured from 1958 to 2009, from western Canada, where long-term decline of climate moisture availability has been observed, to examine how soil drainage could affect the response of forest net biomass change and its components (growth and mortality) to global change-type drought. Results After accounting for the effects of endogenous forest age-related processes, temporal changes in absolute rates of biomass gain from growth did not differ among drainage classes, and temporal increases in biomass loss from tree mortality were also similar across drainage classes, resulting in similar decreases in net biomass change. Relative growth was significantly higher on moderately drained sites than well drained or poorly drained sites likely due to larger temporal decreases in standing biomass relative to declines in temporal growth on moderately drained soils. Moreover, growth, mortality, and net biomass change responded to atmospheric CO2, annual temperature anomaly, and standardized precipitation evapotranspiration index similarly across all drainage classes. Conclusions Our results suggest that climate change serves as a top-down control on forest growth, mortality and net biomass change.
- Lakehead University Canada
- Lakehead University Canada
Local site effects, Ecology, Growth, Drainage class, Climate change, Boreal forest, Net biomass change, QH540-549.5
Local site effects, Ecology, Growth, Drainage class, Climate change, Boreal forest, Net biomass change, QH540-549.5
6 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2007IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
