
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Spectral Data-Based Estimation of Soil Heat Flux

doi: 10.13031/2013.39837
Numerous existing spectral-based soil heat flux (G) models have shown wide variation in performance for maize and soybean cropping systems in Nebraska, indicating the need for localized calibration and model development. The objectives of this article are to develop a semi-empirical model to estimate G from a normalized difference vegetation index (NDVI) and net radiation (Rn) for maize (Zea mays L.) and soybean (Glycine max L.) fields in the Great Plains, and present the suitability of the developed model to estimate G under similar and different soil and management conditions. Soil heat fluxes measured in both irrigated and rainfed fields in eastern and south-central Nebraska were used for model development and validation. An exponential model that uses NDVI and Rn was found to be the best to estimate G based on r2 values. The effect of geographic location, crop, and water management practices were used to develop semi-empirical models under four case studies. Each case study has the same exponential model structure but a different set of coefficients and exponents to represent the crop, soil, and management practices. Results showed that the semi-empirical models can be used effectively for G estimation for nearby fields with similar soil properties for independent years, regardless of differences in crop type, crop rotation, and irrigation practices, provided that the crop residue from the previous year is more than 4000 kg ha-1. The coefficients calibrated from particular fields can be used at nearby fields in order to capture temporal variation in G. However, there is a need for further investigation of the models to account for the interaction effects of crop rotation and irrigation. Validation at an independent site having different soil and crop management practices showed the limitation of the semi-empirical model in estimating G under different soil and environment conditions.
- University of Nebraska System United States
- AUS (United States) United States
- United States Department of the Interior United States
- Business Breakthrough University Japan
- University of Nebraska System United States
550, NDVI, Natural Resources Management and Policy, Energy balance, Remote sensing, 333, 630, Net radiation, Soil heat flux, Natural Resources and Conservation, Other Environmental Sciences, Environmental Sciences
550, NDVI, Natural Resources Management and Policy, Energy balance, Remote sensing, 333, 630, Net radiation, Soil heat flux, Natural Resources and Conservation, Other Environmental Sciences, Environmental Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
