Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2015
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mass Mortality Events in the NW Adriatic Sea: Phase Shift from Slow- to Fast-Growing Organisms

Authors: Cristina Gioia Di Camillo; Carlo Cerrano;

Mass Mortality Events in the NW Adriatic Sea: Phase Shift from Slow- to Fast-Growing Organisms

Abstract

Massive outbreaks are increasing all over the world, which are likely related to climate change. The North Adriatic Sea, a sub-basin of the Mediterranean Sea, is a shallow semi-closed sea receiving high nutrients inputs from important rivers. These inputs sustain the highest productive basin of the Mediterranean Sea. Moreover, this area shows a high number of endemisms probably due to the high diversity of environmental conditions and the conspicuous food availability. Here, we documented two massive mortalities (2009 and 2011) and the pattern of recovery of the affected biocoenoses in the next two years. Results show an impressive and fast shift of the benthic assemblage from a biocoenosis mainly composed of slow-growing and long-lived species to a biocoenosis dominated by fast-growing and short-lived species. The sponge Chondrosia reniformis, one of the key species of this assemblage, which had never been involved in previous massive mortality events in the Mediterranean Sea, reduced its coverage by 70%, and only few small specimens survived. All the damaged sponges, together with many associated organisms, were detached by rough-sea conditions, leaving large bare areas on the rocky wall. Almost three years after the disease, the survived specimens of C. reniformis did not increase significantly in size, while the bare areas were colonized by fast-growing species such as stoloniferans, hydrozoans, mussels, algae, serpulids and bryozoans. Cnidarians were more resilient than massive sponges since they quickly recovered in less than one month. In the study area, the last two outbreaks caused a reduction in the filtration efficiency of the local benthic assemblage by over 60%. The analysis of the times series of wave heights and temperature revealed that the conditions in summer 2011 were not so extreme as to justify severe mass mortality, suggesting the occurrence of other factors which triggered the disease. The long-term observations of a benthic assemblage in the NW Adriatic Sea allowed us to monitor its dynamics before, during and after the mortality event. The N Adriatic Sea responds quickly to climatic anomalies and other environmental stresses because of the reduced dimension of the basin. The long-term consequences of frequent mass mortality episodes in this area could promote the shift from biocoenoses dominated by slow-growing and long-lived species to assemblages dominated by plastic and short life cycle species.

Related Organizations
Keywords

Science, Climate Change, Q, R, Temperature, Bacterial Physiological Phenomena, Porifera, Cnidaria, Mediterranean Sea, Medicine, Animals, Seasons, Ecosystem, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
Green
gold