

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of Elevated Atmospheric CO2 and Temperature on the Disease Severity of Rocket Plants Caused by Fusarium Wilt under Phytotron Conditions

Effect of Elevated Atmospheric CO2 and Temperature on the Disease Severity of Rocket Plants Caused by Fusarium Wilt under Phytotron Conditions
The severity of F. oxysporum f.sp. conglutinans on rocket plants grown under simulated climate change conditions has been studied. The rocket plants were cultivated on an infested substrate (4 log CFU g-1) and a non-infested substrate over three cycles. Pots were placed in six phytotrons in order to simulate different environmental conditions: 1) 400-450 ppm CO2, 18-22°C; 2) 800-850 ppm CO2, 18-22°C; 3) 400-450 ppm CO2, 22-26°C, 4) 800-850 ppm CO2, 22-26°C, 5) 400-450 ppm CO2, 26-30°C; 6) 800-850 ppm CO2, 26-30°C. Substrates from the infested and control samples were collected from each phytotron at 0, 60 and 120 days after transplanting. The disease index, microbial abundance, leaf physiological performances, root exudates and variability in the fungal profiles were monitored. The disease index was found to be significantly influenced by higher levels of temperature and CO2. Plate counts showed that fungal and bacterial development was not affected by the different CO2 and temperature levels, but a significant decreasing trend was observed from 0 up to 120 days. Conversely, the F. oxysporum f.sp. conglutinans plate counts did not show any significantly decrease from 0 up to 120 days. The fungal profiles, evaluated by means of polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), showed a relationship to temperature and CO2 on fungal diversity profiles. Different exudation patterns were observed when the controls and infested plants were compared, and it was found that both CO2 and temperature can influence the release of compounds from the roots of rocket plants. In short, the results show that global climate changes could influence disease incidence, probably through plant-mediated effects, caused by soilborne pathogens.
- National Research Council Italy
- University of Turin Italy
- AGROBIO SL Spain
- AGROBIO SL Spain
- University of Galway Ireland
Greenhouse Effect, plant-pathogen interaction, Science, Climate Change, Plant Roots, Fusarium, Climate change, soilborne pathogen, fungal microbiot, Plant Diseases, PCR-DGGE, Atmosphere, Fusarium oxysporum f.sp. conglutinans, Q, R, Temperature, Carbon Dioxide, Environment, Controlled, Plant Leaves, Brassicaceae, Host-Pathogen Interactions, Medicine
Greenhouse Effect, plant-pathogen interaction, Science, Climate Change, Plant Roots, Fusarium, Climate change, soilborne pathogen, fungal microbiot, Plant Diseases, PCR-DGGE, Atmosphere, Fusarium oxysporum f.sp. conglutinans, Q, R, Temperature, Carbon Dioxide, Environment, Controlled, Plant Leaves, Brassicaceae, Host-Pathogen Interactions, Medicine
3 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 9 - 9views
Data source Views Downloads OpenAIRE 9 0

