Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/wp...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/bg...
Other literature type . 2022
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Emission factors for Vietnamese beef cattle manure sun-drying and the effects of drying on manure microbial community

عوامل الانبعاث لسماد الأبقار الفيتنامية تجفيف الشمس وآثار التجفيف على المجتمع الميكروبي للسماد
Authors: Nguyễn Văn Thành; Koki Maeda; Yukiko Nishimura; Trinh Thi Hong Nguyen; Kinh Van La; Nguyen Duc Dien; Tomoyuki Suzuki;

Emission factors for Vietnamese beef cattle manure sun-drying and the effects of drying on manure microbial community

Abstract

Livestock manure and its management are significant sources of greenhouse gas (GHG). In most Southeast Asian countries, the current GHG emissions are estimated by the Intergovernmental Panel on Climate Change (IPCC) Tier 1 approach using default emission factors. Sun-drying is the dominant manure treatment in Vietnam, and in this study, we measured GHG emissions during manure drying using a chamber-based approach. Results show the emission factors for CH4and N2O were 0.295 ± 0.078 g kg−1volatile solids (VS) and 0.132 ± 0.136 g N2O-N kg−1Ninitial, respectively. We monitored the total bacterial/archaeal community using 16S rRNA gene amplicon sequencing and measured the abundance of functional genes required for methanogenesis (mcrA), nitrification (amoA) and denitrification (nirK,nirSandnosZ) processes. Methane emission occurred only at the beginning of the drying process (days 1 to 3). The results of amplicon sequencing indicated that the relative abundance of methanogens also decreased during this period. Although some nitrification activity was detected, there was no significant N2O emission. These findings well describe the manure management system in south Vietnam and the GHG emission from this manure category, paving the way for higher Tier estimations using country-specific values.

Keywords

Microbial population biology, Nitrous Oxide, Organic chemistry, Methanogenesis, Engineering, RNA, Ribosomal, 16S, Manure management, Ecology, Microbiota, Q, R, Life Sciences, Diversity and Function of Gut Microbiome, Nitrification, FOS: Philosophy, ethics and religion, Chemistry, Vietnam, Physical Sciences, Environmental chemistry, Denitrification, Medicine, Anaerobic Digestion and Biogas Production, Methane, Research Article, Sustainable Diets and Environmental Impact, Nitrogen, Science, Vietnamese, Greenhouse gas, Environmental science, Greenhouse Gases, Biochemistry, Genetics and Molecular Biology, Genetics, Animals, Molecular Biology, Biology, Bacteria, Linguistics, Building and Construction, Agronomy, Waste Treatment, Manure, Philosophy, FOS: Biological sciences, Environmental Science, FOS: Languages and literature, Cattle, Animal science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold