Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Holzforschung
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards low polymer content transparent composites via novel integration engineering

Authors: Jiamin Wu; Yunyi Liang; Yingji Wu; Jianzhang Li; Jianxiong Lu; Su Shiung Lam; Mu. Naushad; +2 Authors

Towards low polymer content transparent composites via novel integration engineering

Abstract

Abstract The high polymer and low wood content of current transparent wood has limitation in the mechanical strength and hence obstruct green sustainable transition of the building industry. In this study, a novel method for manufacturing transparent wood was reported by minimizing the usage of polyethylene glycol using partial impregnation followed by a densification approach. The delignified wood was firstly partially impregnated by polyethylene glycol, and subsequently compressed to eliminate pores for the compressed transparent wood, providing the strong hydrogen bonds and dense structures for transparent wood. The wood content of the novel compressed transparent wood was dramatically increased to 64%, compared with the uncompressed transparent wood of 25%. Additionally, the obtained compressed transparent wood demonstrated satisfactory optical transmittance, suitable thermal energy storage, and superior mechanical strengths owing to the formation of densely packed microstructures. This novel, sustainable, and low-cost transparent wood was easy to be manufactured while having increased mechanical and energy-saving characteristics compared to those available in the existing market.

Related Organizations
Keywords

transparent wood, partial impregnation, densification, thermal energy storage, mechanical strength

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average