Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sakarya University J...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sakarya University Journal of Science
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Climate Change on Distribution Areas of Former Endemic Plant Species Campanula lyrata Lam.

Authors: Behlül GÜLER;

Effects of Climate Change on Distribution Areas of Former Endemic Plant Species Campanula lyrata Lam.

Abstract

Species distribution models (SDMs) are useful tools for future potential distribution patterns of species in the face of climate change. Turkey is expected to be affected considerably from climatic change i.e., up to 6°C increase in temperature and 50% decrease in precipitation by 2070. Therefore, there is an urgent need for conservation and management practices for future patterns of species. It is aimed current and future (using CMIP5 projected to 2070) potential distribution areas of Campanula lyrata Lam., which is formerly an endemic species. To do this, presence-only data was used, which is obtained from the Global Biodiversity Information Facility (GBIF). Bioclimatic data from was downloaded from WorldClim dataset with 10 km2 resolution. Species distribution modelling was performed using R program. Two regression techniques and two machine learning techniques namely Generalized Linear Models (GLMs), Generalized Additive Models (GAMs), Support Vector Machine (SVM) and Random Forest (RF), were used, respectively. The bootstrapping method as partitioning resampling was also used for all analysis. Considerably high model performances as well as AUC values for all possible models were found. Significant range shifts between current and future climatic conditions were found. The most relevant relative importance variables were precipitation seasonality and precipitation of the wettest month. This study reveals the importance of the future distributional areas of species.Species distribution models (SDMs) are useful tools for future potential distribution patterns of species in the face of climate change. Turkey is expected to be affected considerably from climatic change i.e., up to 6°C increase in temperature and 50% decrease in precipitation by 2070. Therefore, there is an urgent need for conservation and management practices for future patterns of species. It is aimed current and future (using CMIP5 projected to 2070) potential distribution areas of Campanula lyrata Lam., which is formerly an endemic species. To do this, presence-only data was used, which is obtained from the Global Biodiversity Information Facility (GBIF). Bioclimatic data from was downloaded from WorldClim dataset with 10 km2 resolution. Species distribution modelling was performed using R program. Two regression techniques and two machine learning techniques namely Generalized Linear Models (GLMs), Generalized Additive Models (GAMs), Support Vector Machine (SVM) and Random Forest (RF), were used, respectively. The bootstrapping method as partitioning resampling was also used for all analysis. Considerably high model performances as well as AUC values for all possible models were found. Significant range shifts between current and future climatic conditions were found. The most relevant relative importance variables were precipitation seasonality and precipitation of the wettest month. This study reveals the importance of the future distributional areas of species.

Country
Turkey
Keywords

biology, Yapısal Biyoloji, vascular plant, botany, Engineering (General). Civil engineering (General), Çevre Bilimleri, Chemistry, Structural Biology, Biology;Botany;Vascular plant;Species distribution models., TA1-2040, species distribution models., QD1-999, Environmental Sciences

2 Data sources, page 1 of 1
  • more_vert
  • more_vert
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold