Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Horticulturae
Article . 2020 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Article . 2020
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Principal mechanism of tolerance to abiotic stresses in Cynara cardunculus L.

Authors: Pappalardo H.; Genovese C.; Puglia G. D.; Leonardi C.; Toscano V.; Raccuia S. A.;

Principal mechanism of tolerance to abiotic stresses in Cynara cardunculus L.

Abstract

Abiotic stresses, that characterize many world marginal areas, are increased by climate change. The plant response to these stresses consists of different processes to alleviate both cellular hyperosmolarity and ion disequilibrium or to synthesize antioxidant compounds. Cardoon (Cynara cardunculus L.) is a perennial crop of the Asteraceae family, native to the Mediterranean region, with a high production of biomass and grain, available for green chemistry, and able to grow in stressful environment. The aim of this work was to investigate different cardoon response mechanisms to abiotic stresses. Following this purpose, we evaluated the ability of cardoon seeds to germinate under salt stress condition and on the sprouts obtained we measured the total phenols content (TPC) and antioxidant activity (AA). In addition, the growth of cardoon seedlings under heavy metals (arsenic and cadmium) stress conditions was monitored. Moreover, based on library of cDNA previously constructed from seedlings growth in similar stress condition, the gene Phytochelatin Synthase (PS), associated with abiotic stress tolerance, was isolated. Furthermore, Natural Resistance of Macrophage (NRAMP3), Heavy metal ATPase (HMA), Inorganic Phosphate Transport (PHT), Zinc and Iron Protein (ZIP) genes associated with heavy metal stress were isolated and the levels of gene expression were measured. The results showed the ability of C. cardunculus to tolerate salt and heavy metals stresses, thanks to different defense mechanisms against abiotic stress implemented by cardoon plants. Then, this species can be considered as a promising future crop for green chemistry in marginal lands.

Country
Italy
Related Organizations
Keywords

cardoon, Heavy metals, Climate change, salt, seed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average