Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology
Article . 2008 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Ecology
Article . 2009
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DEFOLIATION SYNCHRONIZES ABOVEGROUND GROWTH OF CO-OCCURRING C4GRASS SPECIES

Authors: Anthony M. Swemmer; Alan K. Knapp;

DEFOLIATION SYNCHRONIZES ABOVEGROUND GROWTH OF CO-OCCURRING C4GRASS SPECIES

Abstract

The aboveground net primary productivity (ANPP) of grass communities in grasslands and savannas is primarily determined by precipitation quantity. Recent research, motivated by predictions of changes in the distribution of rainfall events by global climate change models, indicates that ANPP may be affected by rainfall distribution as much as by annual totals. Grazing and community composition are also known to affect grassland ANPP. The manner in which interactions between rainfall distribution, grazing, and community composition affect the relationship between precipitation and ANPP represents a critical knowledge gap. The effects of community composition and grazing on aboveground growth responses to intraseasonal variation in water availability were investigated at seven grassland sites with a nonselective clipping experiment. The aboveground growth of the dominant C4 species at each site was measured at regular intervals for 2-3 growing seasons in the presence or absence of regular defoliation. In the absence of defoliation, there was a general lack of synchrony of intraseasonal growth among co-occurring species. Variation in growth rates was high and was only partially explained by variation in rainfall. Regular defoliation increased growth synchrony at all sites, but changes in growth responses to rainfall varied between sites. These results suggest that community composition will be important in determining ANPP-precipitation relationships under conditions of altered rainfall distribution. However this effect appears to be a result of species responding differently to soil water or other resources rather than to rainfall per se. Grazing may override the effects of community composition by reducing differences in growth patterns between species and has the potential to weaken precipitation controls on ANPP.

Related Organizations
Keywords

Population Density, Climate, Rain, Population Dynamics, Poaceae, Carbon, Plant Leaves, Species Specificity, Biomass, Seasons, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average