
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Species redistribution creates unequal outcomes for multispecies fisheries under projected climate change
Abstract Climate change drives species distribution shifts, impacting the availability of resources people rely upon for food and livelihoods. These impacts are complex, manifest at local scales and have diverse effects across multiple species. Yet, for wild capture fisheries current understanding is dominated by predictions for individual species at coarse spatial scales. We show that localized environmental changes that vary across species will alter the ensemble of co-occurring fishery species within established fishing footprints along the U.S. West Coast. We demonstrate that availability of the most economically-valuable, primary target species is highly likely to decline coastwide in response to warming and reduced oxygen concentrations, while availability of the most abundant, secondary target species will potentially increase. A spatial reshuffling of primary and secondary target species suggests regionally heterogeneous opportunities for fishers to adapt by changing where or what they fish. Developing foresight into the collective responses of species at local scales will enable more effective and tangible adaptation pathways for fishing communities.
- University of California System United States
- National Oceanic and Atmospheric Administration
- Touro University California United States
- Southwest Fisheries Science Center United States
- Wellesley College United States
Oxygen, 570, Earth, Environmental, Ecological, and Space Sciences, Food, Climate Change, Acclimatization, Fisheries, Animals
Oxygen, 570, Earth, Environmental, Ecological, and Space Sciences, Food, Climate Change, Acclimatization, Fisheries, Animals
