
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bacteriocolonic Pathway for Ethanol Oxidation: Characteristics and Implications

pmid: 8811162
Alcohol ingested orally is transported to the colon by blood circulation, and after the distribution phase, intracolonic ethanol levels are equal to those in the blood. Recent studies in our laboratory suggest that in the large bowel ethanol is oxidized by a bacteriocolonic pathway. In this pathway intracolonic ethanol is at first oxidized by bacterial alcohol dehydrogenase to acetaldehyde. Then acetaldehyde is oxidized either by colonic mucosal or bacterial aldehyde dehydrogenase to acetate. Part of intracolonic acetaldehyde may also be absorbed to portal vein and be metabolized in the liver. The bacteriocolonic pathway offers a new explanation for the disappearance of a part of ethanol calories. Due to the low aldehyde dehydrogenase activity of colonic mucosa, acetaldehyde accumulates in the colon. Accordingly during ethanol oxidation highest acetaldehyde levels of the body are found in the colon and not in the liver. High intracolonic acetaldehyde may contribute to the pathogenesis of alcohol-induced diarrhoea. Because acetaldehyde is a carcinogen in experimental animals, it may also contribute to the increased risk of colon polyps and colon cancer, which have been found to be associated with heavy alcohol consumption. Intracolonic acetaldehyde may also be an important determinant of the blood acetaldehyde level and a possible hepatotoxin. In addition to acetaldehyde, gut-derived endotoxin is another potential candidate in the pathogenesis of alcohol-related liver injury. Experimental alcoholic liver injury has recently been prevented by antibiotics, and this effect was related to the prevention of endotoxin-induced activation of Kupffer's cells.
- Helsinki University Hospital Finland
- Hospital District of Helsinki and Uusimaa Finland
- Helsinki University Hospital Finland
Colonic Diseases, Ethanol, Colon, Bacterial Toxins, Colonic Neoplasms, Humans, Aldehyde Dehydrogenase, Risk Assessment
Colonic Diseases, Ethanol, Colon, Bacterial Toxins, Colonic Neoplasms, Humans, Aldehyde Dehydrogenase, Risk Assessment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).132 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
