
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Pediocin SA-1: A selective bacteriocin for controlling Listeria monocytogenes in maize silages

In this study, we assessed the potential as silage additive of a bacteriocin produced by Pediococcus acidilactici Northern Regional Research Laboratory (NRRL) B-5627 (pediocin SA-1). Maize was inoculated either with a bacterial starter alone (I) or in combination with the bacteriocin (IP), and untreated silage served as control. We monitored the products of fermentation (ethanol, and lactic and acetic acids), the microbial population, and the presence of the indicator strain Listeria monocytogenes Colección Española de Cultivos Tipo (CECT) 4032 (1×10(5) cfu/g) after 1, 2, 5, 8, 16, and 30d of ensiling. Our results indicated antilisterial activity of the bacteriocin, anticipating the disappearance of L. monocytogenes in IP compared with I and control silages. The PCR-denaturing gradient gel electrophoresis analysis revealed the addition of the bacteriocin did not affect the bacterial communities of the spontaneous fermentation, and the inoculant-containing bacteria (Lactobacillus plantarum, Lactobacillus buchneri, and Enterococcus faecium) were found in addition to the bacterial communities of untreated maize silages in I and IP silages. Both treatments increased the concentration of antimicrobial compounds (acetic acid, ethanol, and 1,2-propanodiol) and led to lower residual sugar contents compared with the control, which would provide enhanced aerobic stability. The fact that the identified species L. plantarum, L. buchneri, and E. faecium produce some of these inhibitory compounds, together with their persistence throughout the 30d of fermentation, suggest these bacteria could actively participate in the ensiling process. According to these results, pediocin SA-1 could be used as an additive to control the presence of L. monocytogenes in maize silages selectively, while improving their fermentative quality and eventually their aerobic stability.
- International Iberian Nanotechnology Laboratory Portugal
- CUNEF Universidad Spain
- University of Minho Portugal
- Universidade de Vigo Spain
- CUNEF Universidad Spain
DNA, Bacterial, Pediococcus acidilactici, Lactobacillus delbrueckii, Silage, Science & Technology, Ethanol, Pediocins, Enterococcus faecium, pathogenic bacteria, Hydrogen-Ion Concentration, Listeria monocytogenes, Zea mays, Anti-Bacterial Agents, lactic acid bacteria, Fermentation, antimicrobial, silage, Acetic Acid, Lactobacillus plantarum
DNA, Bacterial, Pediococcus acidilactici, Lactobacillus delbrueckii, Silage, Science & Technology, Ethanol, Pediocins, Enterococcus faecium, pathogenic bacteria, Hydrogen-Ion Concentration, Listeria monocytogenes, Zea mays, Anti-Bacterial Agents, lactic acid bacteria, Fermentation, antimicrobial, silage, Acetic Acid, Lactobacillus plantarum
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
