Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Dairy Sci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Dairy Science
Article . 2017 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Dairy Science
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Article . 2017
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Other literature type . 2017
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubliCatt
Article . 2017
Data sources: PubliCatt
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of dry period length and dietary energy source on inflammatory biomarkers and oxidative stress in dairy cows

Authors: Bas Kemp; J Chen; Annarita Ferrari; Erminio Trevisi; A.T.M. van Knegsel; Rupert M. Bruckmaier; N. Mayasari; +2 Authors

Effects of dry period length and dietary energy source on inflammatory biomarkers and oxidative stress in dairy cows

Abstract

Negative energy balance in dairy cows in early lactation has been associated with increased inflammation and oxidative stress in these cows. The objective of this study was to evaluate the effects of dry period (DP) length and dietary energy source on inflammatory biomarkers and oxidative stress in dairy cows. Holstein-Friesian dairy cows (60 primiparous and 107 multiparous) were assigned randomly to a 3 × 2 factorial design with 3 DP length (0, 30, or 60 d) and 2 early lactation rations (glucogenic or lipogenic). Cows were fed a glucogenic or lipogenic ration from 10 d before the expected calving date. Blood was collected in wk -3, -2, -1, 1, 2, and 4 relative to calving. Dry period length affected inflammatory biomarkers and oxidative stress, especially in wk 1 and 2 after calving. Cows with a 0-d DP had higher levels of ceruloplasmin, cholesterol, and reactive oxygen metabolites, and they tended to have higher haptoglobin levels compared with cows with a 30- or 60-d DP. Cows with a 0-d DP had a lower plasma paraoxonase and bilirubin in the first 2 wk after calving and a lower liver functionality index compared with cows with a 60-d DP. Cows of parity >3 fed a glucogenic ration had higher cholesterol levels compared with cows of parity >3 fed a lipogenic ration. No interaction between DP length and ration was present for inflammatory biomarkers or oxidative stress variables. Plasma bilirubin levels for cows with a 0-d DP were negatively related to energy balance and metabolic status in these cows. Moreover, occurrence of clinical health problems (fever, mastitis, metritis, and retained placenta) was 41, 27, and 30% for cows with 0-, 30-, and 60-d DP, respectively. High levels of ceruloplasmin, cholesterol, and reactive oxygen metabolites in cows with 0-d DP were related to the occurrence of health problems in these cows. In conclusion, omitting the DP increased levels of ceruloplasmin, cholesterol, and reactive oxygen metabolites, and decreased levels of bilirubin and paraoxonase in plasma, independent of ration, compared with cows with a 60-d DP. These contrasting effects of DP length on inflammatory status could be explained in part by the improved energy balance and occurrence of health problems in these cows, but was not related to increased somatic cell count in cows with a 0-d DP. Cows with a 0-d DP had better energy balance, but also had higher levels of oxidative stress compared with cows with a 60-d DP. Moreover, occurrence of health problems did not differ between cows with different DP lengths.

Countries
Netherlands, Italy, Italy
Keywords

Time Factors, Cattle Diseases, Acute phase protein, Energy balance, acute phase protein; continuous milking; energy balance; oxidative stress; Food Science; Animal Science and Zoology; Genetics, Diet, High-Fat, Pregnancy, Genetics, Animals, Lactation, Netherlands, Haptoglobins, Aryldialkylphosphatase, Ceruloplasmin, Bilirubin, Continuous milking, Energy Research, Animal Feed, Diet, Oxidative Stress, Cholesterol, Oxidative stress, Animal Science and Zoology, Cattle, Female, Energy Intake, Energy Metabolism, Reactive Oxygen Species, Biomarkers, Food Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green
gold