
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Persistent Uncertainties in Ocean Net Primary Production Climate Change Projections at Regional Scales Raise Challenges for Assessing Impacts on Ecosystem Services

Ocean net primary production (NPP) results from CO2 fixation by marine phytoplankton, catalysing the transfer of organic matter and energy to marine ecosystems, supporting most marine food webs, and fisheries production as well as stimulating ocean carbon sequestration. Thus, alterations to ocean NPP in response to climate change, as quantified by Earth system model experiments conducted as part of the 5th and 6th Coupled Model Intercomparison Project (CMIP5 and CMIP6) efforts, are expected to alter key ecosystem services. Despite reductions in inter-model variability since CMIP5, the ocean components of CMIP6 models disagree roughly 2-fold in the magnitude and spatial distribution of NPP in the contemporary era, due to incomplete understanding and insufficient observational constraints. Projections of NPP change in absolute terms show large uncertainty in CMIP6, most notably in the North Atlantic and the Indo-Pacific regions, with the latter explaining over two-thirds of the total inter-model uncertainty. While the Indo-Pacific has previously been identified as a hotspot for climate impacts on biodiversity and fisheries, the increased inter-model variability of NPP projections further exacerbates the uncertainties of climate risks on ocean-dependent human communities. Drivers of uncertainty in NPP changes at regional scales integrate different physical and biogeochemical factors that require more targeted mechanistic assessment in future studies. Globally, inter-model uncertainty in the projected changes in NPP has increased since CMIP5, which amplifies the challenges associated with the management of associated ecosystem services. Notably, this increased regional uncertainty in the projected NPP change in CMIP6 has occurred despite reduced uncertainty in the regional rates of NPP for historical period. Improved constraints on the magnitude of ocean NPP and the mechanistic drivers of its spatial variability would improve confidence in future changes. It is unlikely that the CMIP6 model ensemble samples the complete uncertainty in NPP, with the inclusion of additional mechanistic realism likely to widen projections further in the future, especially at regional scales. This has important consequences for assessing ecosystem impacts. Ultimately, we need an integrated mechanistic framework that considers how NPP and marine ecosystems respond to impacts of not only climate change, but also the additional non-climate drivers.
- University of Montpellier France
- University of Liverpool United Kingdom
- Université de Montpellier (EPE) France
- Université de Montpellier France
- Université Montpellier France
[SDE] Environmental Sciences, 550, climate projections, 551, ocean net primary production, Environmental sciences, climate change, [SDE]Environmental Sciences, ocean modeling, ocean biogeochemical model, GE1-350, earth system model (ESM), ocean biogeochemical cycles, oceanography
[SDE] Environmental Sciences, 550, climate projections, 551, ocean net primary production, Environmental sciences, climate change, [SDE]Environmental Sciences, ocean modeling, ocean biogeochemical model, GE1-350, earth system model (ESM), ocean biogeochemical cycles, oceanography
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).87 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
