Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Marine ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Understanding the Coastal Ecocline: Assessing Sea–Land Interactions at Non-tidal, Low-Lying Coasts Through Interdisciplinary Research

Authors: Gerald Jurasinski; Gerald Jurasinski; Manon Janssen; Maren Voss; Maren Voss; Michael E. Böttcher; Michael E. Böttcher; +36 Authors

Understanding the Coastal Ecocline: Assessing Sea–Land Interactions at Non-tidal, Low-Lying Coasts Through Interdisciplinary Research

Abstract

Coastal zones connect terrestrial and marine ecosystems forming a unique environment that is under increasing anthropogenic pressure. Rising sea levels, sinking coasts, and changing precipitation patterns modify hydrodynamic gradients and may enhance sea–land exchange processes in both tidal and non-tidal systems. Furthermore, the removal of flood protection structures as restoration measure contributes locally to the changing coastlines. A detailed understanding of the ecosystem functioning of coastal zones and the interactions between connected terrestrial and marine ecosystems is still lacking. Here, we propose an interdisciplinary approach to the investigation of interactions between land and sea at shallow coasts, and discuss the advantages and the first results provided by this approach as applied by the research training group Baltic TRANSCOAST. A low-lying fen peat site including the offshore shallow sea area on the southern Baltic Sea coast has been chosen as a model system to quantify hydrophysical, biogeochemical, sedimentological, and biological processes across the land–sea interface. Recently introduced rewetting measures might have enhanced submarine groundwater discharge (SGD) as indicated by distinct patterns of salinity gradients in the near shore sediments, making the coastal waters in front of the study site a mixing zone of fresh- and brackish water. High nutrient loadings, dissolved inorganic carbon (DIC), and dissolved organic matter (DOM) originating from the degraded peat may affect micro- and macro-phytobenthos, with the impact propagating to higher trophic levels. The terrestrial part of the study site is subject to periodic brackish water intrusion caused by occasional flooding, which has altered the hydraulic and biogeochemical properties of the prevailing peat soils. The stable salinity distribution in the main part of the peatland reveals the legacy of flooding events. Generally, elevated sulfate concentrations are assumed to influence greenhouse gas (GHG) emissions, mainly by inhibiting methane production, yet our investigations indicate complex interactions between the different biogeochemical element cycles (e.g., carbon and sulfur) caused by connected hydrological pathways. In conclusion, sea–land interactions are far reaching, occurring on either side of the interface, and can only be understood when both long-term and event-based patterns and different spatial scales are taken into account in interdisciplinary research that involves marine and terrestrial expertise.

Country
Germany
Keywords

550, greenhouse gas emissions, Science, Q, submarine groundwater discharge, General. Including nature conservation, geographical distribution, land–sea coupling, QH1-199.5, coastal peatland, shallow coast, shallow coast; coastal peatland; land–sea coupling; greenhouse gas emissions; submarine groundwater discharge

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Green
gold